A variant in the BACH2 gene is associated with susceptibility to autoimmune Addison's disease in humans


Context: Autoimmune Addison’s disease (AAD) is a rare but highly heritable condition. The BACH2 protein plays a crucial role in T lymphocyte maturation, and allelic variation in its gene has been associated with a number of autoimmune conditions.

Objective: We aimed to determine whether alleles of the rs3757247 single nucleotide polymorphism (SNP) in the BACH2 gene are associated with AAD.

Design, Setting, and Patients: This case-control association study was performed in two phases using Taqman chemistry. In the first phase, the rs3757247 SNP was genotyped in 358 UK AAD subjects and 166 local control subjects. Genotype data were also available from 5154 healthy UK controls from the Wellcome Trust (WTCCC2) for comparison. In the second phase, the SNP was genotyped in a validation cohort comprising 317 Norwegian AAD subjects and 365 controls.

Results: The frequency of the minor T allele was significantly higher in subjects with AAD from the United Kingdom compared to both the local and WTCCC2 control cohorts (58% vs 45 and 48%, respectively) (local controls, P = 1.1 × 10−4; odds ratio [OR], 1.68; 95% confidence interval [CI], 1.29–2.18; WTCCC2 controls, P = 1.4 × 10−6; OR, 1.44; 95% CI, 1.23–1.69). This finding was replicated in the Norwegian validation cohort (P = .0015; OR, 1.41; 95% CI, 1.14–1.75). Subgroup analysis showed that this association is present in subjects with both isolated AAD (OR, 1.53; 95% CI, 1.22–1.92) and autoimmune polyglandular syndrome type 2 (OR, 1.37; 95% CI, 1.12–1.69) in the UK cohort, and with autoimmune polyglandular syndrome type 2 in the Norwegian cohort (OR, 1.58; 95% CI, 1.22–2.06).

Conclusion: We have demonstrated, for the first time, that allelic variability at the BACH2 locus is associated with susceptibility to AAD. Given its association with multiple autoimmune conditions, BACH2 can be considered a “universal” autoimmune susceptibility locus.

Journal of Clinical Endocrinology & Metabolism 2016; 101(11):3865-3869