Graphical assessment

Normal Probability Plots & Order Statistics

J N S Matthews

Biostatistics Research Group, Newcastle University

Several ways to proceed:

- Could plot a histogram needs number of bins to be specified
- Third and fourth moments of a Normal distribution are known:
 - Skewness is defined as:

$$\frac{\mathsf{E}[(x-\mu)^3]}{\sigma^3}$$

Test for Normality

and vanishes for a Normal distribution

Kurtosis is defined as:

$$\kappa = \frac{\mathsf{E}[(x-\mu)^3]}{\sigma^4}$$

and is 3 for a Normal distribution ($\kappa - 3$ is the excess Kurtosis). Measures heaviness of tails of distribution. t-distribution has $\kappa > 3$ and is *leptokurtic* (as opposed to platykurtic)

Normal Probability Plots

Graphical assessment

An alternative graphical method, requiring no specification of bins etc. is the Normal Probability Plot (NPP)

- Method is based on ordering the data
- Suppose Z_1, \ldots, Z_n is a sample of n independent realisations from a N(0,1) distribution.
- Once ordered, sample is denoted by $Z_{(1)} < Z_{(2)} < \ldots < Z_{(n)}$ - the order statistics.
- Can compute the expected order statistics, $E[Z_{(i)}]$ for $i=1,\ldots,n$
- Realisations of $Z_{(i)}$ and values of $E[Z_{(i)}]$ are shown on next slide for various sample sizes

Example order statistics

Graphical assessment

000000

Samples of sizes 5,10,25,50,75,100 - expected values in red

Practical Use

- 1 Confronted with some real data, Y_1, \ldots, Y_n , how can this be used to assess Normality?
- 2 Note that $Y_i = \mu + \sigma Z_i$ translates to $Y_{(i)} = \mu + \sigma Z_{(i)}$ because $\sigma > 0$.
- ${f 3}$ So plot of $Y_{(i)}$ versus ${\sf E}[Z_{(i)}]$ should give a line that is approximately straight and
- **4** a regression of $Y_{(i)}$ on $\mathsf{E}[Z_{(i)}]$ will have slope σ and intercept μ

Example of NPP

Graphical assessment

Plot is for a random sample, size 50, from $N(10, 3^2)$.

Simple regression line in red - intercept 10.74, slope 2.87

How well do NPPs pick up non-Normality?

Graphical assessment

0000000

NPP & histogram of an exponential variable mean $\frac{1}{2}$

Histogram and NPP seem equally good - but this is an easy case

Symmetric, non-Normal case

Graphical assessment

000000

NPP & histogram of a t-variable with 5 df, $\kappa = 9$

Histogram and NPP seem to struggle equally - symmetric & non-Normal not easy to detect - perhaps tails of NPP more telling

To plot a NPP we need $E[Z_{(i)}]$ - how is this computed?

- 1 The X_i have distribution and density $F(\cdot)$ and $f(\cdot)$, respectively.
- **2** Distribution function of $X_{(r)}$ is $F_r(\cdot)$.
- **3** The event $\{X_{(r)} < x\}$ occurs when at least r of the sample are less than x.
- **4** Occurs with probability $\sum_{i=r}^{n} a_i$, where

$$a_j = \binom{n}{j} F(x)^j [1 - F(x)]^{n-j}, \qquad j = 1, \dots, n$$

6 To get the density of $X_{(r)}$, $f_r(x)$, this must be differentiated.

Density of $X_{(r)}$

Graphical assessment

Now $\frac{da_j}{dx} = b_j - c_j$, where

$$b_{j} = j \binom{n}{j} F(x)^{j-1} [1 - F(x)]^{n-j} f(x)$$

$$c_{j} = (n-j) \binom{n}{j} F(x)^{j} [1 - F(x)]^{n-j-1} f(x)$$

and it turns out $b_{i+1} = c_i$ and $c_n = 0$, so the sum telescopes, giving

$$f_r(x) = r \binom{n}{r} F(x)^{r-1} [1 - F(x)]^{n-r} f(x)$$

Also, note there is an alternative form because

$$n \binom{n-1}{r-1} = r \binom{n}{r}$$

Order statistics, Uniform distribution

- **1** General form of $f_r(\cdot)$ not that useful
- 2 but it is for the Uniform distribution with F(x) = x and f(x) = 1
- **3** Substituting in general result shows $U_{(r)}$ has a Beta distribution with parameters r and n-r+1,
- 4 which has mean

$$\mathsf{E}[U_{(r)}] = \frac{r}{n+1}$$

1 Expression for $f_r(x)$ with $F = \Phi$ and $f = \phi$ does not provide tractable moments. So need approximations.

Test for Normality

- 2 Note that $\Phi(Z_r) = U_r$, and as Φ monotone increasing, $\Phi(Z_{(r)}) = U_{(r)}.$
- 3 Initial attempt might be to use

$$\mathsf{E}[Z_{(r)}] \approx \Phi^{-1}(\mathsf{E}[\Phi(Z_{(r)})]) = \Phi^{-1}\left(\frac{r}{n+1}\right)$$

Not entirely without justification - it is a first order Taylor expansion.

Better approximations

Graphical assessment

1 Not a brilliant approximation. Rather than use higher order Taylor series, Blom (1958) considered

$$\mathsf{E}[Z_{(r)}] pprox \Phi^{-1}\left(rac{r-lpha}{n-2lpha+1}
ight)$$

- 2 $\alpha = 0$ is foregoing case, $\alpha = \frac{1}{2}$ is often seen, but best compromise that is independent of n is $\alpha = \frac{3}{8}$
- 3 R routines are available to get very accurate results using numerical integration.

Comparison of approximations

Examples for n = 50

$\alpha = \frac{1}{2}$	$\alpha = \frac{3}{8}$	$\alpha = 0$	'exact'	r
0.8064	0.8014	0.7868	0.8023	40
0.8779	0.8722	0.8557	0.8732	41
				:
1 6440	1 6005	1 5647	1 6006	40
1.0449	1.0235	1.5047	1.0280	48
1.8808	1.8475	1.7599	1.8549	49
2.3263	2.2433	2.0619	2.2491	50
				48 49

Dependence of order statistics

- **1** Even if the X_i are independent, the $X_{(i)}$ are not.
- 2 $\Pr(X_1 < x \mid X_2 < x) = \Pr(X_1 < x)$
- 6 but clearly

Graphical assessment

$$\Pr(X_{(1)} < x \mid X_{(2)} < x) = 1$$

4 So $cov(X_{(r)}, X_{(s)})$ will be non-zero and that has some implications later. The joint density of these variables, $f_{rs}(x,y)$ can be found using an extension of the argument used for $f_r(x)$ - see the notes.

Tests for Normality

- If we want to know whether data are Normal, then we could test the null hypothesis that the data are Normal.
- 2 Indeed we can. In fact books have been written on it (e.g. Thode, 2002)
- 3 How some methods work is fairly obvious: e.g. testing skewness or kurtosis or using Kolomogorov-Smirnov.
- 4 Several variants of a method that turns out to be a good omnibus test (i.e. good against a range of alternatives), associated with the names of Shapiro-Wilk (SW), Shapiro-Francia (SF), Weisberg-Bingham are, perhaps, in need of more explanation.

Should we test for Normality?

- The following slides will explain the SW and SF test. But should we bother?
- Most tests have poor power in moderate sized samples. Tests focussed on a given aspect, such as skewness, may have better power against that aspect than, say SW or SF, but will miss other aspects entirely.
- Poor power means that failure to discredit Normality may mean little.
- But for many purposes, modest (or even larger?) departures from Normality will not be too troublesome. Most methods are very forgiving is this respect.
- Some applications rely more heavily on the Normality assumption, such as determination of reference ranges or centile charts.

Shapiro-Wilk Test

- 1 The SW test based on the following observations
- 2 If the data are Normal, then the slope of the NPP is an estimator of σ .
- **3** Regardless of the Normality of the data, the usual sample SD also estimates σ .
- 4 SW works by comparing these estimates (although the actual test statistic uses a scaling that isn't entirely transparent)

Estimate of σ

① Define $m_i = \mathsf{E}[Z_{(i)}]$ and ${\boldsymbol m}$ as vector of m_i , and ${\boldsymbol 1}$ as vector of ones. Then, if ${\boldsymbol y}$ are the *ordered* data

$$\begin{pmatrix} \hat{\mu} \\ \hat{\sigma} \end{pmatrix} = \begin{pmatrix} \mathbf{1}^T \mathbf{V}^{-1} \mathbf{1} & \mathbf{1}^T \mathbf{V}^{-1} \mathbf{m} \\ \mathbf{m} \mathbf{V}^{-1} \mathbf{1} & \mathbf{m}^T \mathbf{V}^{-1} \mathbf{m} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{1}^T \mathbf{V}^{-1} \mathbf{y} \\ \mathbf{m}^T \mathbf{V}^{-1} \mathbf{y} \end{pmatrix}$$

- 2 Note use of generalized least squares with weighting matrix the inverse of V, where $(V)_{rs} = \text{cov}[X_{(r)}, X_{(s)}]$
- **3** Numerical methods based on $f_{rs}(x,y)$ needed to obtain V
- 4 Some surprising simplifications are possible

A methodological excursion - Basu's Theorem

Theorem

Graphical assessment

Basu's Theorem: suppose data are from a family with density $f(\cdot \mid \boldsymbol{\theta})$. If T is complete and sufficient for $\boldsymbol{\theta}$ and V has a distribution that does not depend on θ , then T and V are independent.

And also:

$\mathsf{Theorem}$

If data are Normally distributed, then the sample mean, \overline{X} , and sample variance, s^2 , are independent.

A curious result

- **1** For Normal data, (\overline{X}, s^2) is complete and sufficient for (μ, σ^2) .
- 2 $\left(\frac{X_{(1)}-\overline{X}}{s},\dots,\frac{X_{(n)}-\overline{X}}{s}\right)$ clearly does not depend on (μ,σ)
- 3 So $(X_{(1)}-\overline{X},\ldots,X_{(n)}-\overline{X})$ is independent of \overline{X}
- ① Consequently for standard Normal variables, $\text{cov}[Z_{(r)},\overline{Z}] = \text{var}[\overline{Z}]$, for $r=1,\ldots,n$
- $oldsymbol{0}$ Using $n\overline{Z}=\sum Z_{(i)}$ this leads to $oldsymbol{V}\mathbf{1}=\mathbf{1}$ and hence $oldsymbol{V}^{-1}\mathbf{1}=\mathbf{1}$

Back to SW

 $oldsymbol{0}$ By symmetry $oldsymbol{m}^T oldsymbol{1} = 0$, which with $oldsymbol{V}^{-1} oldsymbol{1} = oldsymbol{1}$ gives

$$\hat{\mu} = \overline{m{y}}$$

$$\hat{\sigma} = \frac{m{m}^T m{V}^{-1} m{y}}{m{m}^T m{V}^{-1} m{m}}$$

2 Shapiro & Wilk took a to be a unit vector proportional to $V^{-1}m$ and defined the SW statistic as:

$$W = \frac{(a^T y)^2}{(n-1)s^2} = \frac{(m^T V^{-1} y)^2}{(n-1)s^2 m^T V^{-1} V^{-1} m}$$

Some properties of W

- **1** An application of Cauchy-Schwartz shows that $0 \le W \le 1$
- 2 In the notes $\mathsf{E}[W]$ is derived: for n=50, $\mathsf{E}[W]=0.967$.
- ${f 3}$ In the null case W is a negatively skewed variable, with values further from one corresponding to non-Normal data
- ① p-values can be found by simulation these days, although Royston (1982) applied a Box-Cox transformation to 1-W in order to derive p-values. Can use shapiro.test in R .

Shapiro-Francia (SF) test

The SW statistic is awkward to calculate because it requires the evaluation of \boldsymbol{V} .

- 1 This is required because it is (essentially) the dispersion matrix of the ordered data, so we use GLS
- 2 If we ignored this feature and used OLS the estimators would still be consistent.
- f 3 This is the approach of the Shapiro-Francia statistic, W_f
- $oldsymbol{4}$ Same expression but with $oldsymbol{V}$ replaced with the identity
- **5** That is

$$W_f = \frac{(\boldsymbol{b}^T \boldsymbol{y})^2}{(n-1)s^2}$$

where b is a unit vector proportional to m.

SF test and further simplification

- **1** As with W, $0 \le W_f \le 1$, with small W_f discrediting null hypothesis
- 2 Indeed, if $y = \bar{y} + sm$, then $W_f = 1$.
- 3 Routine for SF is in R library DescTools.
- $oldsymbol{4}$ SF is still a little awkward as m is still required. Weisberg and Bingham used $\Phi^{-1}[(i-\frac{3}{8})/(n+\frac{1}{4})]$ in place of m_i .
- 5 SW, SF and Weisberg-Bingham have very similar properties

Application to residuals

- Could apply any of these tests to estimated residuals
- However, estimated residuals are not independent
- Complexity of SW test arises from taking account of dependence of observations induced by the ordering
- Estimated residuals are dependent even before ordering.
- ullet More detail in notes but probably no case at all for using W rather than simpler versions in this application.
- Also note that $\hat{\epsilon}=(I-P)\epsilon$, i.e. *estimated* residuals are linear combinations of residuals
- Can exaggerate their Normality idea of supernormality.

Q-Q and P-P plots

- NPPs are examples of Q-Q plots
- Q-Q plots plot quantiles of data against those of putative distribution - ranges are those of the support of the data.
- **3** I.e. $Y_{(i)}$ vs $F^{-1}(\mathsf{E}[U_{(i)}]) = F^{-1}(i/(n+1))$.
- 4 P-P plots transform to a 0-1 scale, i.e. $F(Y_{(i)})$ vs i/(n+1).
- **6** If null is true, graph aligns along y = x
- 6 Cannot estimate parameters from graph for Normal P-P plot, ordinate, $\Phi((Y_{(i)} - \hat{\mu})/\hat{\sigma})$ requires parameter estimates.
- Probably easier to spot outliers in a Q-Q plot

Q-Q & P-P plot examples

Graphical assessment

Q-Q and P-P plots for sample (n = 50) generated by rnorm

Half-Normal plots

- 1 Half-Normal plots (HNPs) are Q-Q plots based on the Half-Normal distribution
- 2 The Half-Normal distribution is the distribution of |Y|, where $Y \sim N(0, \sigma^2)$. A standard Half-Normal is the distribution of |Z|.
- **3** The distribution function of |Z| is $2\Phi(x) 1, x > 0$.
- Useful to assess variables that are expected to be zero-mean Normal variables, such as residuals

Uses and using HNPs

- 1 First used for assessing effects in high-order factorial designs
- 2 Can be used to help identify non-zero correlations in a large correlation matrix.
- 3 Plot ordered absolute values against $\Phi^{-1}(\frac{1}{2}(x_i+1))$, where x_i could be

$$\frac{i}{n+1}$$
 or $\frac{i-\frac{1}{2}}{n}$

Example HNPs

Graphical assessment

The residuals from regressing either OI (black) or $\log OI$ (red) on age

Envelope plots

- An abiding issue with the assessment of NPPs or HNPs is 'How straight is straight?'
- 2 Envelope plots, popular in '80s and '90s, provide some help
- 3 Idea is to generate a number of sets of residuals that are stochastically the same as the observed residuals (if model is correct)
- 4 Then plot their envelope as well as observed residuals [i.e. max and min of simulated residuals at each abscissa]

Generating envelope

- **1** Observation $Y_i \sim N((\boldsymbol{X}\boldsymbol{\beta})_i, \sigma^2)$ differs from $Z_i \sim N(0, 1)$ only by scale and location.
- 2 scale-free residuals i.e. scaled, standardized or deletion residuals will therefore be same if we regress either Y_i or Z_i on \boldsymbol{X} [assuming model is correct]
- 3 So generate 19 sets of scale-free residuals using standard Normal variables for dependent variable and same covariates as in model. Use these to generate envelope
- **4** Really just a device to get a vector from $N(0, \mathbf{I} \mathbf{P})$

Example of envelope plots

Envelope plots HNP of residuals from OI (black) and $\log OI$ (red) on age

Some remarks

- 1 Testing for Normality not easy [try running hist(rnorm(10)) a few times in R]
- 2 Should always ask if it is necessary depends on context
- If not Normal what will you do? Skewness probably easiest violation to detect and, often, easy to remedy by using logs
- 4 Departures from Normality may be global but often local
- 6 Often NPPs etc. are best at spotting latter, i.e. outliers or points to be questioned.