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Graphical assessment
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Assessing Normality of data

Several ways to proceed:

@ Could plot a histogram - needs number of bins to be specified

® Third and fourth moments of a Normal distribution are
known:

® Skewness is defined as:
E[(z — 1)
o3
and vanishes for a Normal distribution
® Kaurtosis is defined as:

El(z — 1)°]

R =
ot

and is 3 for a Normal distribution (k — 3 is the excess
Kurtosis). Measures heaviness of tails of distribution.
t-distribution has x > 3 and is leptokurtic (as opposed to
platykurtic)
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Normal Probability Plots

An alternative graphical method, requiring no specification of bins
etc. is the Normal Probability Plot (NPP)

® Method is based on ordering the data

® Suppose Z1, ..., Zy, is a sample of n independent realisations
from a N(0,1) distribution.

® Once ordered, sample is denoted by Z(1) < Z) < ... < Z(y)
- the order statistics.

® Can compute the expected order statistics, E[Z ;)] for
1=1,....,n

® Realisations of Z;) and values of E[Z(;)] are shown on next
slide for various sample sizes
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Example order statistics

Samples of sizes 5,10,25,50,75,100 - expected values in red
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Sample values
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Practical Use

@ Confronted with some real data, Y7,...,Y,, how can this be
used to assess Normality?

® Note that Y; =y + 0Z; translates to Y(;) = u+ 02,
because o > 0.

© So plot of Y{;) versus E[Z(;)] should give a line that is
approximately straight and

O a regression of Y(;) on E[Z(;)] will have slope o and intercept u
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Example of NPP

Plot is for a random sample, size 50, from N(10, 32).

7
2 A
4
/
un?a
s s
g ;;/
EN P
o 9S4 .
g &
H 7
s 94 é
2 4
S g
W
y
© - pa
fos®
A
/
© - /V°
T T T T T
-2 -1 0 1 2

Expected order statistics

Simple regression line in red - intercept 10.74, slope 2.87
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How well do NPPs pick up non-Normality?

NPP & histogram of an exponential variable mean %

Normal Q-Q Plot Histogram of exponential variable
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Histogram and NPP seem equally good - but this is an easy case
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Symmetric, non-Normal case

NPP & histogram of a t-variable with 5 df, Kk =9

Normal Q-Q Plot Histogram of t variable on 5 df
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Histogram and NPP seem to struggle equally - symmetric & non-Normal
not easy to detect - perhaps tails of NPP more telling
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Order statistics - general properties

To plot a NPP we need E[Z;)] - how is this computed?

@ The X; have distribution and density F'(:) and f(-),
respectively.

@ Distribution function of X, is Fy.(-).

© The event {X(,) <} occurs when at least r of the sample
are less than .

© Occurs with probability >, a;, where
n ; n—i .
o= (§) F@rl-FE@I, =1L
@ To get the density of X(,, f-(z), this must be differentiated.
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Density of X,

daj _
Now -2 = b; — c;, where

b= (1) Py - )

= (n=3) () PPl = PP f(0

and it turns out b;41 = ¢; and ¢, = 0, so the sum telescopes, giving

) Fla) 1 - F@)]"" ()

Also, note there is an alternative form because
n =r
r—1 r
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Order statistics, Uniform distribution

@ General form of f,.(-) not that useful

@® but it is for the Uniform distribution with F(z) = = and
flz)=1

© Substituting in general result shows U,y has a Beta
distribution with parameters r and n —r + 1,

@ which has mean
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Order statistics, Normal distribution

@ Expression for f.(z) with ' = ® and f = ¢ does not provide
tractable moments. So need approximations.

® Note that ®(Z,) = U,, and as & monotone increasing,
© Initial attempt might be to use

ElZ(n] = @71 (E[®(Z()]) = & (n i 1>

O Not entirely without justification - it is a first order Taylor
expansion.
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Better approximations

@ Not a brilliant approximation. Rather than use higher order
Taylor series, Blom (1958) considered

ElZ] ~ 3! <T—a>

n—2a+1

® o = 0 is foregoing case, a = 5 is often seen, but best

compromise that is independent of n is o = %

©® R routines are available to get very accurate results using
numerical integration.
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Comparison of approximations

Examples for n = 50

r ‘exactt a=0 a=5 a=j3
40 0.8023 0.7868 0.8014 0.8064
41 0.8732 0.8557 0.8722 0.8779

48 1.6286 1.5647 1.6235 1.6449
49 1.8549 1.7599 1.8475 1.8808
50 2.2491 2.0619 2.2433 2.3263
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Dependence of order statistics

@ Even if the X; are independent, the X(;) are not.
(2] Pl“(Xl <z ‘ Xo < .%') = Pr(X1 < J?)

© but clearly
PI‘(X(l) <z | X(g) < :L’) =1

O So cov(X(,), X(s)) will be non-zero and that has some
implications later. The joint density of these variables,
frs(x,y) can be found using an extension of the argument
used for f,(x) - see the notes.
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Test for Normality
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Tests for Normality

@ If we want to know whether data are Normal, then we could
test the null hypothesis that the data are Normal.

@® Indeed we can. In fact books have been written on it (e.g.
Thode, 2002)

© How some methods work is fairly obvious: e.g. testing
skewness or kurtosis or using Kolomogorov-Smirnov.

O Several variants of a method that turns out to be a good
omnibus test (i.e. good against a range of alternatives),
associated with the names of Shapiro-Wilk (SW),
Shapiro-Francia (SF), Weisberg-Bingham are, perhaps, in
need of more explanation.
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Should we test for Normality?

® The following slides will explain the SW and SF test. But
should we bother?

® Most tests have poor power in moderate sized samples. Tests
focussed on a given aspect, such as skewness, may have
better power against that aspect than, say SW or SF, but will
miss other aspects entirely.

® Poor power means that failure to discredit Normality may
mean little.

® But for many purposes, modest (or even larger?) departures
from Normality will not be too troublesome. Most methods
are very forgiving is this respect.

® Some applications rely more heavily on the Normality
assumption, such as determination of reference ranges or
centile charts.
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Test for Normality
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Shapiro-Wilk Test

@ The SW test based on the following observations

@ If the data are Normal, then the slope of the NPP is an
estimator of o.

© Regardless of the Normality of the data, the usual sample SD
also estimates o.

O SW works by comparing these estimates (although the actual
test statistic uses a scaling that isn't entirely transparent)
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Estimate of o

© Define m; = E[Z(;)] and m as vector of m;, and 1 as vector
of ones. Then, if y are the ordered data

2\ 1Tv-lr 1Tv-im\ T 1TVl
) \mV~1T m'v-im mTv-ly

@ Note use of generalized least squares with weighting matrix
the inverse of V', where (V'),s = cov[X(;), X(4)]

© Numerical methods based on f,s(x,y) needed to obtain V'

O Some surprising simplifications are possible
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A methodological excursion - Basu's Theorem

Basu’s Theorem: suppose data are from a family with density
f(-18). If T is complete and sufficient for @ and V' has a
distribution that does not depend on 6, then T’ and V' are
independent.

And also:

If data are Normally distributed, then the sample mean, X, and

2

sample variance, s, are independent.
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A curious result

@ For Normal data, (X, s?) is complete and sufficient for (u, 02).

s

() (X“)_X, el X(";_X> clearly does not depend on (u, o)

® So (X(1) — X,... s X(n) — X) is independent of X

O Consequently for standard Normal variables,

cov[Z(yy, Z] = var[Z], forr =1,...,n

@ Using nZ = >~ Z(;) this leads to V1 =1 and hence
vi1=1
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Back to SW

© By symmetry m”'1 = 0, which with V=11 = 1 gives

p=y

. mlvly

0= —5——
mITV-1m

® Shapiro & Wilk took a to be a unit vector proportional to
V~1m and defined the SW statistic as:
(mTV—ly)Q

(a™y)? _
(n—1)s>mTV-1V-1m

(n—1)s?
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Some properties of W

@ An application of Cauchy-Schwartz shows that 0 < W <1
@ In the notes E[IV] is derived: for n = 50, E[W] = 0.967.

© In the null case W is a negatively skewed variable, with values
further from one corresponding to non-Normal data

O p-values can be found by simulation these days, although
Royston (1982) applied a Box-Cox transformation to 1 — W in
order to derive p-values. Can use shapiro.test in R.
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Shapiro-Francia (SF) test

The SW statistic is awkward to calculate because it requires the
evaluation of V.

@ This is required because it is (essentially) the dispersion
matrix of the ordered data, so we use GLS

@ If we ignored this feature and used OLS the estimators would
still be consistent.

© This is the approach of the Shapiro-Francia statistic, Wy
O Same expression but with V' replaced with the identity

@ That is
| (b"y)?
(n—1)s?

where b is a unit vector proportional to m.

Wp =
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SF test and further simplification

O As with W, 0 < W; <1, with small Wy discrediting null
hypothesis

® Indeed, if y = § + sm, then Wy = 1.
© Routine for SF is in R library DescTools.

O SF is still a little awkward as m is still required. Weisberg and
Bingham used ®~![(i — 2)/(n + 1)] in place of m;.
® SW, SF and Weisberg-Bingham have very similar properties
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Application to residuals

e Could apply any of these tests to estimated residuals
® However, estimated residuals are not independent

® Complexity of SW test arises from taking account of
dependence of observations induced by the ordering

® Estimated residuals are dependent even before ordering.

® More detail in notes - but probably no case at all for using W
rather than simpler versions in this application.

® Also note that € = (I — P)g, i.e. estimated residuals are
linear combinations of residuals

e Can exaggerate their Normality - idea of supernormality.
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Q-Q and P-P plots

@ NPPs are examples of Q-Q plots

® Q-Q plots plot quantiles of data against those of putative
distribution - ranges are those of the support of the data.

© le Y vs FTYE[Uy]) = F71(i/(n+1)).
O P-P plots transform to a 0-1 scale, i.e. F(Y(;)) vsi/(n+1).
@ If null is true, graph aligns along y = x

@ Cannot estimate parameters from graph - for Normal P-P
plot, ordinate, ®((Y(;) — f1)/5) requires parameter estimates.

@ Probably easier to spot outliers in a Q-Q plot
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Q-Q & P-P plot examples

Q-Q and P-P plots for sample (n = 50) generated by rnorm

Normal Q-Q Plot Normal P-P Plot

Sample Quantiles
%
Sample proportion

Theoretical Quantiles i(n+1)
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Half-Normal plots

@ Half-Normal plots (HNPs) are Q-Q plots based on the
Half-Normal distribution

® The Half-Normal distribution is the distribution of |Y|, where
Y ~ N(0,0%). A standard Half-Normal is the distribution of
2.

© The distribution function of |Z| is 2®(x) — 1,2 > 0.

O Useful to assess variables that are expected to be zero-mean
Normal variables, such as residuals
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Uses and using HNPs

Other topics
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@ First used for assessing effects in high-order factorial designs

® Can be used to help identify non-zero correlations in a large
correlation matrix.

© Plot ordered absolute values against ®~*(3(z; + 1)), where z;
could be

1

17—

N[

n—+1 or

n
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Example HNPs

The residuals from regressing either OI (black) or log OI (red) on age
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Envelope plots

@ An abiding issue with the assessment of NPPs or HNPs is
‘How straight is straight?’

® Envelope plots, popular in ‘80s and ‘90s, provide some help

© ldea is to generate a number of sets of residuals that are
stochastically the same as the observed residuals (if model is
correct)

O Then plot their envelope as well as observed residuals [i.e.
max and min of simulated residuals at each abscissa]
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Generating envelope

@ Observation Y; ~ N((X3);,0?) differs from Z; ~ N(0,1)
only by scale and location.

@ scale-free residuals - i.e. scaled, standardized or deletion
residuals will therefore be same if we regress either Y; or Z; on
X [assuming model is correct]

© So generate 19 sets of scale-free residuals using standard
Normal variables for dependent variable and same covariates
as in model. Use these to generate envelope

O Really just a device to get a vector from N(0,I — P)
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Example of envelope plots

Envelope plots HNP of residuals from OI (black) and log OI (red) on

age

Residuals
1
I

0.0 0.5 1.0 15 2.0 25

Half-normal scores
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Some remarks

@ Testing for Normality not easy [try running
hist (rnorm(10)) a few times in R |

® Should always ask if it is necessary - depends on context

© If not Normal what will you do? Skewness probably easiest
violation to detect and, often, easy to remedy by using logs

O Departures from Normality may be global but often local

@ Often NPPs etc. are best at spotting latter, i.e. outliers or
points to be questioned.
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