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Assessing Normality of data

Several ways to proceed:

1 Could plot a histogram - needs number of bins to be specified

2 Third and fourth moments of a Normal distribution are
known:

• Skewness is defined as:

E[(x− µ)3]

σ3

and vanishes for a Normal distribution
• Kurtosis is defined as:

κ =
E[(x− µ)3]

σ4

and is 3 for a Normal distribution (κ− 3 is the excess
Kurtosis). Measures heaviness of tails of distribution.
t-distribution has κ > 3 and is leptokurtic (as opposed to
platykurtic)
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Normal Probability Plots

An alternative graphical method, requiring no specification of bins
etc. is the Normal Probability Plot (NPP)

• Method is based on ordering the data

• Suppose Z1, . . . , Zn is a sample of n independent realisations
from a N(0,1) distribution.

• Once ordered, sample is denoted by Z(1) < Z(2) < . . . < Z(n)

- the order statistics.

• Can compute the expected order statistics, E[Z(i)] for
i = 1, . . . , n

• Realisations of Z(i) and values of E[Z(i)] are shown on next
slide for various sample sizes
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Example order statistics

Samples of sizes 5,10,25,50,75,100 - expected values in red
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Practical Use

1 Confronted with some real data, Y1, . . . , Yn, how can this be
used to assess Normality?

2 Note that Yi = µ+ σZi translates to Y(i) = µ+ σZ(i)

because σ > 0.

3 So plot of Y(i) versus E[Z(i)] should give a line that is
approximately straight and

4 a regression of Y(i) on E[Z(i)] will have slope σ and intercept µ
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Example of NPP

Plot is for a random sample, size 50, from N(10, 32).
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How well do NPPs pick up non-Normality?

NPP & histogram of an exponential variable mean 1
2
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Histogram and NPP seem equally good - but this is an easy case
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Symmetric, non-Normal case

NPP & histogram of a t-variable with 5 df, κ = 9
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not easy to detect - perhaps tails of NPP more telling
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Order statistics - general properties

To plot a NPP we need E[Z(i)] - how is this computed?

1 The Xi have distribution and density F (·) and f(·),
respectively.

2 Distribution function of X(r) is Fr(·).
3 The event {X(r) < x} occurs when at least r of the sample

are less than x.

4 Occurs with probability
∑n

j=r aj , where

aj =

(
n
j

)
F (x)j [1− F (x)]n−j , j = 1, . . . , n

5 To get the density of X(r), fr(x), this must be differentiated.
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Density of X(r)

Now
daj

dx = bj − cj , where

bj = j

(
n
j

)
F (x)j−1[1− F (x)]n−jf(x)

cj = (n− j)

(
n
j

)
F (x)j [1− F (x)]n−j−1f(x)

and it turns out bj+1 = cj and cn = 0, so the sum telescopes, giving

fr(x) = r

(
n
r

)
F (x)r−1[1− F (x)]n−rf(x)

Also, note there is an alternative form because

n

(
n− 1
r − 1

)
= r

(
n
r

)
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Order statistics, Uniform distribution

1 General form of fr(·) not that useful
2 but it is for the Uniform distribution with F (x) = x and

f(x) = 1

3 Substituting in general result shows U(r) has a Beta
distribution with parameters r and n− r + 1,

4 which has mean
E[U(r)] =

r

n+ 1
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Order statistics, Normal distribution

1 Expression for fr(x) with F = Φ and f = ϕ does not provide
tractable moments. So need approximations.

2 Note that Φ(Zr) = Ur, and as Φ monotone increasing,
Φ(Z(r)) = U(r).

3 Initial attempt might be to use

E[Z(r)] ≈ Φ−1(E[Φ(Z(r))]) = Φ−1

(
r

n+ 1

)

4 Not entirely without justification - it is a first order Taylor
expansion.
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Better approximations

1 Not a brilliant approximation. Rather than use higher order
Taylor series, Blom (1958) considered

E[Z(r)] ≈ Φ−1

(
r − α

n− 2α+ 1

)

2 α = 0 is foregoing case, α = 1
2 is often seen, but best

compromise that is independent of n is α = 3
8

3 R routines are available to get very accurate results using
numerical integration.
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Comparison of approximations

Examples for n = 50

r ‘exact’ α = 0 α = 3
8 α = 1

2

40 0.8023 0.7868 0.8014 0.8064
41 0.8732 0.8557 0.8722 0.8779
...

48 1.6286 1.5647 1.6235 1.6449
49 1.8549 1.7599 1.8475 1.8808
50 2.2491 2.0619 2.2433 2.3263
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Dependence of order statistics

1 Even if the Xi are independent, the X(i) are not.

2 Pr(X1 < x | X2 < x) = Pr(X1 < x)

3 but clearly
Pr(X(1) < x | X(2) < x) = 1

4 So cov(X(r), X(s)) will be non-zero and that has some
implications later. The joint density of these variables,
frs(x, y) can be found using an extension of the argument
used for fr(x) - see the notes.
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Tests for Normality

1 If we want to know whether data are Normal, then we could
test the null hypothesis that the data are Normal.

2 Indeed we can. In fact books have been written on it (e.g.
Thode, 2002)

3 How some methods work is fairly obvious: e.g. testing
skewness or kurtosis or using Kolomogorov-Smirnov.

4 Several variants of a method that turns out to be a good
omnibus test (i.e. good against a range of alternatives),
associated with the names of Shapiro-Wilk (SW),
Shapiro-Francia (SF), Weisberg-Bingham are, perhaps, in
need of more explanation.

J N S Matthews Normal plots



Graphical assessment Order Statistics Test for Normality Other topics

Should we test for Normality?

• The following slides will explain the SW and SF test. But
should we bother?

• Most tests have poor power in moderate sized samples. Tests
focussed on a given aspect, such as skewness, may have
better power against that aspect than, say SW or SF, but will
miss other aspects entirely.

• Poor power means that failure to discredit Normality may
mean little.

• But for many purposes, modest (or even larger?) departures
from Normality will not be too troublesome. Most methods
are very forgiving is this respect.

• Some applications rely more heavily on the Normality
assumption, such as determination of reference ranges or
centile charts.
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Shapiro-Wilk Test

1 The SW test based on the following observations

2 If the data are Normal, then the slope of the NPP is an
estimator of σ.

3 Regardless of the Normality of the data, the usual sample SD
also estimates σ.

4 SW works by comparing these estimates (although the actual
test statistic uses a scaling that isn’t entirely transparent)
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Estimate of σ

1 Define mi = E[Z(i)] and m as vector of mi, and 1 as vector
of ones. Then, if y are the ordered data(

µ̂
σ̂

)
=

(
1TV −11 1TV −1m
mV −11 mTV −1m

)−1(
1TV −1y
mTV −1y

)

2 Note use of generalized least squares with weighting matrix
the inverse of V , where (V )rs = cov[X(r), X(s)]

3 Numerical methods based on frs(x, y) needed to obtain V

4 Some surprising simplifications are possible
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A methodological excursion - Basu’s Theorem

Theorem

Basu’s Theorem: suppose data are from a family with density
f(· | θ). If T is complete and sufficient for θ and V has a
distribution that does not depend on θ, then T and V are
independent.

And also:

Theorem

If data are Normally distributed, then the sample mean, X, and
sample variance, s2, are independent.
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A curious result

1 For Normal data, (X, s2) is complete and sufficient for (µ, σ2).

2

(
X(1)−X

s , . . . ,
X(n)−X

s

)
clearly does not depend on (µ, σ)

3 So (X(1) −X, . . . ,X(n) −X) is independent of X

4 Consequently for standard Normal variables,
cov[Z(r), Z] = var[Z], for r = 1, . . . , n

5 Using nZ =
∑

Z(i) this leads to V 1 = 1 and hence
V −11 = 1
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Back to SW

1 By symmetry mT1 = 0, which with V −11 = 1 gives

µ̂ = y

σ̂ =
mTV −1y

mTV −1m

2 Shapiro & Wilk took a to be a unit vector proportional to
V −1m and defined the SW statistic as:

W =
(aTy)2

(n− 1)s2
=

(mTV −1y)2

(n− 1)s2mTV −1V −1m
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Some properties of W

1 An application of Cauchy-Schwartz shows that 0 ≤ W ≤ 1

2 In the notes E[W ] is derived: for n = 50, E[W ] = 0.967.

3 In the null case W is a negatively skewed variable, with values
further from one corresponding to non-Normal data

4 p-values can be found by simulation these days, although
Royston (1982) applied a Box-Cox transformation to 1−W in
order to derive p-values. Can use shapiro.test in R .
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Shapiro-Francia (SF) test

The SW statistic is awkward to calculate because it requires the
evaluation of V .

1 This is required because it is (essentially) the dispersion
matrix of the ordered data, so we use GLS

2 If we ignored this feature and used OLS the estimators would
still be consistent.

3 This is the approach of the Shapiro-Francia statistic, Wf

4 Same expression but with V replaced with the identity

5 That is

Wf =
(bTy)2

(n− 1)s2

where b is a unit vector proportional to m.
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SF test and further simplification

1 As with W , 0 ≤ Wf ≤ 1, with small Wf discrediting null
hypothesis

2 Indeed, if y = ȳ + sm, then Wf = 1.

3 Routine for SF is in R library DescTools.

4 SF is still a little awkward as m is still required. Weisberg and
Bingham used Φ−1[(i− 3

8)/(n+ 1
4)] in place of mi.

5 SW, SF and Weisberg-Bingham have very similar properties
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Application to residuals

• Could apply any of these tests to estimated residuals

• However, estimated residuals are not independent

• Complexity of SW test arises from taking account of
dependence of observations induced by the ordering

• Estimated residuals are dependent even before ordering.

• More detail in notes - but probably no case at all for using W
rather than simpler versions in this application.

• Also note that ϵ̂ = (I − P )ϵ, i.e. estimated residuals are
linear combinations of residuals

• Can exaggerate their Normality - idea of supernormality.
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Q-Q and P-P plots

1 NPPs are examples of Q-Q plots

2 Q-Q plots plot quantiles of data against those of putative
distribution - ranges are those of the support of the data.

3 I.e. Y(i) vs F
−1(E[U(i)]) = F−1(i/(n+ 1)).

4 P-P plots transform to a 0-1 scale, i.e. F (Y(i)) vs i/(n+ 1).

5 If null is true, graph aligns along y = x

6 Cannot estimate parameters from graph - for Normal P-P
plot, ordinate, Φ((Y(i) − µ̂)/σ̂) requires parameter estimates.

7 Probably easier to spot outliers in a Q-Q plot
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Q-Q & P-P plot examples

Q-Q and P-P plots for sample (n = 50) generated by rnorm
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Half-Normal plots

1 Half-Normal plots (HNPs) are Q-Q plots based on the
Half-Normal distribution

2 The Half-Normal distribution is the distribution of |Y |, where
Y ∼ N(0, σ2). A standard Half-Normal is the distribution of
|Z|.

3 The distribution function of |Z| is 2Φ(x)− 1, x > 0.

4 Useful to assess variables that are expected to be zero-mean
Normal variables, such as residuals
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Uses and using HNPs

1 First used for assessing effects in high-order factorial designs

2 Can be used to help identify non-zero correlations in a large
correlation matrix.

3 Plot ordered absolute values against Φ−1(12(xi + 1)), where xi
could be

i

n+ 1
or

i− 1
2

n
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Example HNPs

The residuals from regressing either OI (black) or logOI (red) on age
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Envelope plots

1 An abiding issue with the assessment of NPPs or HNPs is
‘How straight is straight?’

2 Envelope plots, popular in ‘80s and ‘90s, provide some help

3 Idea is to generate a number of sets of residuals that are
stochastically the same as the observed residuals (if model is
correct)

4 Then plot their envelope as well as observed residuals [i.e.
max and min of simulated residuals at each abscissa]
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Generating envelope

1 Observation Yi ∼ N((Xβ)i, σ
2) differs from Zi ∼ N(0, 1)

only by scale and location.

2 scale-free residuals - i.e. scaled, standardized or deletion
residuals will therefore be same if we regress either Yi or Zi on
X [assuming model is correct]

3 So generate 19 sets of scale-free residuals using standard
Normal variables for dependent variable and same covariates
as in model. Use these to generate envelope

4 Really just a device to get a vector from N(0, I − P )
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Example of envelope plots

Envelope plots HNP of residuals from OI (black) and logOI (red) on

age
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Some remarks

1 Testing for Normality not easy [try running
hist(rnorm(10)) a few times in R ]

2 Should always ask if it is necessary - depends on context

3 If not Normal what will you do? Skewness probably easiest
violation to detect and, often, easy to remedy by using logs

4 Departures from Normality may be global but often local

5 Often NPPs etc. are best at spotting latter, i.e. outliers or
points to be questioned.
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