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Genesis of approach

® Most statistical models make assumptions and the usual approach
to checking them is to fit the model and then examine various
diagnostic quantities.
® Approach depends on software to make fitting a model
straightforward and quick.
® Software became available in the early 1980s and led to many new
diagnostic quantities being defined, largely focussed on continuous
outcomes
® Several books from that era.
@ Belsley, Kuh & Welsch, 1980
@® Cook & Weisberg, 1982
© Atkinson, 1985

® We will cover some aspects of these now-familiar quantities
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Regression equation and familiar results

e Qutcomes are in y, an n-dim vector

® Design matrix is X, an n X p matrix

3 is a p-dim vector of parameters
® ¢ is an n-dim vector of residuals

and

y=XB+e

Elements of vectors will be denoted in usual way - i.e. y; is ith
element of y,
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Some assumptions

We will assume n > p and that X is of rank p

We will assume that the elements of € are independent, and

2 2

® have zero mean and constant variance o*, i.e. var(¢;) = o or,

equivalently, var(e) = o?1.

Quite often we assume the ¢; follow a Normal distribution, i.e.
€ ~ N(0,0°I)
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Basic results

e We have 3 = (XTX)"1XTy - the least squares estimator
e Fitted values are § = X8 = Py, with P = X(XTX)"1Xx7T
® Estimated residualsare é =y —y = (I — P)y

e P is projection onto column space of X, so P2 = P - and
hence (I — P)>=1— P

® We say P and I — P are idempotent.

* Note also E[Y" é?] = E[yT (I — P)y]| and this is
E[eT (I — P)e] = tr(E[(I — P)eeT]) = o%tr(I — P) and this
is (n — p)o?, which leads to 62 = y* (I — P)y/(n — p)

Note use of tr(ABC) = tr(CAB) = tr(BCA) where tr(-) is the trace
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Do we need Normality?

® |f € are assumed to be Normal, ,3 is the maximum likelihood
estimator, and this is known to have optimal properties.

® What if var(e€) = 021, i.e. constant variance but not Normal?
® Remember the Gauss-Markov theorem.

® Among all unbiased estimators of 3 that are linear in y, the
least squares estimator minimises the variance.

e Consider Ay: if unbiased then AX = I and variance is
02AAT. Also

AAT (XTX)' = AAT-AX(XTX) ' XTAT = A(I-P)AT

and as this is non-negative definite, the result follows
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Some consequences for model checking

Ele] = (I - P)E[y] =T - P)XB=0

e Also, if the model is right,

covlé,g] = E[ég?] = (I — P)E[yyT]P =0, i.e. the fitted
values and residuals are uncorrelated.

o |f asjc is the jth column of X, then
aszTé = w?T(I —P)y=0, as :13 is trivially in column space
of X

® In particular > €& = 17¢ = 0, provided there is an intercept in
the model [or something equivalent]. So the sample mean of
residuals is identically zero if there is an intercept.

J N S Matthews The Wrong Model



Model checks
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Practice |

20

18

Onset time (ms)
14

J N S Matthews The Wrong Model

Most methods stem from idea that € will be ‘like’ €

Inadequacies in X3 and in assumptions of constant o2 are

expected to feed into €
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Model checks
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Practice Il

e |[f model is OK, € is unrelated to covariates and has constant
variance

® Proceed, at least initially, assuming this also applies to €

Residuals (standard)
Residuals (Standard)
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Model checks
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Variance of €

e Consider the Ol data. Spread seems to increase with age

® Assumed spread of ¢; does not change with age

® So plot of ¢; should reveal this?

® |s the spread of ¢; constant? Better check.

® var[é] = var[(I — P)y| = o*(I — P)

® So var(¢;) = 0?(1 — h;), with h; being ith diagonal element of
P

® So constant variance of ¢; does not, in general, imply constant
variance of ¢;

® Depends on properties of the h; - the leverages

® These feature a lot in the following, so worthy of some
exploration
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Some important diagnostics
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Leverages |

® | everages depend only on covariates, not on y
® They reflect the potential an observation at x; has to affect ,é'

e Consider fictitious data with outcome y, single covariate x
and n =30

o . D, L ® Red square h; = 0.139
e ® Blue square h; = 0.034
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Some important diagnostics
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Leverages: 0 < h; <1

® Any symmetric, idempotent matrix, A, is non-negative
definite, viz.

el Ax = 2T A%z = 2T AT Ax = (Ax)T (Ax) >0

e Apply thisto A =P and A =1 — P, with x = ¢;, the
vector with a 1 in the ith place and 0 elsewhere: this gives
h,-ZOand 1—hi20

® These limits can be achieved - consider y; = vx; + €;, then
_

>k T
and this can be 0 and can approach 1 arbitrarily closely
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Some important diagnostics
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Leverages: + < h,; < 1

77

® |f the model contains an intercept, then the lower bound
increases to %

® To see this define f; = e; — %1 and note that P1 =1 as
there is an intercept in the model

® Note Ihat fiTP_fi must be non-negative and on expansion is
hi —
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Some important diagnostics
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Leverages: > h;, =p

® This states that tr(P) = p. Can be seen by applying cyclic
permutation identity for trace to formula for P in terms of X

® A more geometrical approach is to note that P is symmetric,
so is orthogonally diagonalisable. This gives tr(P) = > \;,
where \; are the eigenvalues of P

® As P is idempotent, the A;s are all 0 or 1. Eigenvectors with
eigenvalue 1 will form a basis for the range space of X, so
there are rank(X) = p eigenvalues equal to 1

® This result gives a handle on the sizes of the h; as they have
mean p/n

® For models with intercepts, a handle on the size of all of the
elements of P comes from 17 P1 = 171 = n, so the mean of the
off-diagonal elements is (n — p)/[n(n — 1)], i.e. of order 1/n

J N S Matthews The Wrong Model



Some important diagnostics
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Standardized residuals

® When assessing constancy of variance of residuals, sensible to
remove the variation in the variance of ¢; due to factor 1 — h;

® The standardized residual, rg, is

/ € Yi — Yi
r. = =

! S\/l—hi S\/l—hi

® Most authors take opportunity to make the residual
dimensionless by also dividing by s, the estimate of ¢

® Reasonable to think this might be approximately standard
Normal - 95% of values within (-2,2)

® But not exact. Not even t-distributed as denominator is
independent of g; but not of y;
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Some important diagnostics
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Deletion residuals

® Model-checking can be global (errors in specification) or local
(outliers)

® If there is an outlying value, principal concern is for how it
affects estimated parameters

® An example is a suspiciously large y;. This might ‘drag’ the
fitted line towards itself, reducing the size of the residual

® This led to notion of deletion residuals, r;

® Analogous to standardized residual, but with fitted value and
estimated RMS, s based on dataset with ith point omitted
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Some important diagnostics
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Deletion residuals - detail

® In following, subscript (i) indicates an estimate/quantity
found from data with ith point removed

* So B(i) is deletion estimate of 3, which has variance
JQ(Xg)X(i))’l, with X ;) being design matrix with ith row
omitted

® Definition is

. yi — x] B
T’i -

s/ 1+ @] (X X () e

e Could find simply by refitting regression n times but there is a
more elegant and insightful approach
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Some important diagnostics
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Deletion residuals - technicalities

e Worth noting the following three items
0O XX = > x;x]
O XTy=73 zy
Oz (XTX) 1z, =1,

® and also recall the Woodbury identity

A-vvhHl=aA"1'r A 'luad-vialu)ytvia!

where A is a p X p matrix and U,V are p X m matrices
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Some important diagnostics
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Deletion residuals - more technicalities

® Putting A= XTX, U =V =z, gives

1+ (X X)) e = 1/(1 = hy)

® and (XTx)!
- - X' X)) xié
o ==
® and
(n—p-— 1)S%Z-) =s%(n—p—1r?)
® And finally
* / n—p-— 1
Ty =7 7n—p—r£2
® Shrunk towards zero if | 7} |< 1, opposite if | 7} |> 1. N.b.

| 7 |< /7 — p, so can be neither Normal nor ¢
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Some important diagnostics
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Distributional properties of residuals: standard residuals

[hereinafter, we assume an intercept in the model]
e Consider the usual, standard, residual €;.
® These have expectation 0 and variance o2(1 — h;)

® They are dependent - > é; = 0 (plus another p — 1 similar
constraints)

e Correlation for cases i,j is —h;; /(1 — h;)(1 — hj)

® Normalising as €;/s gives values still summing to 0, etc., still
independent of ¢ but not t-distributed
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Some important diagnostics
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Properties: deletion residuals

o Yi — szB(i)
: s(i)\/1+wiT(X(Ti)X(i))*1wi

® These are t-distributed (n — p — 1 df): numerator and
denominator independent (s(;), independent of fitted value

and y;)
® So they have mean 0 and variance (n —p—1)/(n —p —3)

® Deletion residuals do not sum to 0, nor are they independent
of the fitted values :cl-Tﬂ(i)
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Some important diagnostics
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Properties: standardized residuals |

/ € Yi — Ui
r- _

Z:S\/l—hl_S\/l—hZ

® These will not sum to 0 but are functions of residuals alone,
being, apart from factors depending on n,p

/ €
o ——

® They do have expectation zero but a proof is quite delicate, as
the numerator and denominator are dependent.

so are independent of the ¢;
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Some important diagnostics
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Properties: standardized residuals Il

® |f € is Normal, then € is multivariate Normal,
N, (0,0%(I — P)), then é and —é€ have the same distribution,
so

A~ ~ ~

T O - T Y
22 £ )2 22
Zjﬁj Zj<_€]) Zjej

and so E(r}) = 0.

® Similar argument applies if one only assumes € is symmetric
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Some important diagnostics
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Exact distribution of r;

We start with .

i 72
n—p_n—p—1+r;f2
and recall v} is tonn —p — 1 df.

® Remember Z/\/x2/v is t, with numerator and denominator
independent

e 7%is x2 on 1 df

e A x?2 variable is a form of Gamma variable

e If U,V are independent Gammas with same scale parameter,

then U/(U + V) and U + V are independent, with the former
a Beta variable and the latter a Gamma.
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Some important diagnostics
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Exact distribution of 7}, continued

From the above we find
J 7’22 is n — p times a Beta variable with parameters % and

g(n—p—1).

From this we have E[r??] = 1

Can be shown correlation between 77,7/, is
—hij/(1 = hi)(1 = hy)
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Does

Residuals
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it matter?

Practical matters
€000

® To compare all residuals directly, need scaled residual, ¢;/s so all

dimensionless

® Consider Ol data
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Practical matters
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What to do next?

e Different types of residuals differ little
e Clear from all that for Ol data, o2 increases with age.
® What should be done about it?
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Practical matters
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revision

® |f some of the diagnostic plots suggest model inadequacies,
what to do?

® Should not adopt an approach that is too algorithmic

® Diagnostic plots might guide thinking but changes should be
rooted in the context

® Increasing Ol with age and increasing variance - perhaps error
variance is multiplicative?

® ?Try modelling log Ol
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Practical matters
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Trying log Ol
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Looks better - can probably stop model revision here.
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Omissions

What isn't in this lecture

® Cook’s statistic - measures effect of individual point on parameter

estimates
D — By — B X" X (B — B) _ e -9"@0 - 9)
' ps? ps?
o T;Zhi
p(1—hy)’

® Very relevant aim but | haven't used them much

@ Considers all parameters - would often want to focus on
particular items, e.g. treatment effects

@ Puts items on a dimensionless scale but often more meaningful
on original scale

© Seldom interested in looking at omission of all points, rather
than a few suspicious ones
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Omissions

Normal probability plots

® Main omission is no assessment of whether the ¢; are Normal?

Usually done with Normal probability plots

Although there are tests of Normality

This is for another exciting episode
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