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Genesis of approach

• Most statistical models make assumptions and the usual approach
to checking them is to fit the model and then examine various
diagnostic quantities.

• Approach depends on software to make fitting a model
straightforward and quick.

• Software became available in the early 1980s and led to many new
diagnostic quantities being defined, largely focussed on continuous
outcomes

• Several books from that era.

1 Belsley, Kuh & Welsch, 1980
2 Cook & Weisberg, 1982
3 Atkinson, 1985

• We will cover some aspects of these now-familiar quantities
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Regression equation and familiar results

• Outcomes are in y, an n-dim vector

• Design matrix is X, an n× p matrix

• β is a p-dim vector of parameters

• ϵ is an n-dim vector of residuals

and
y = Xβ + ϵ

Elements of vectors will be denoted in usual way - i.e. yi is ith
element of y,
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Some assumptions

• We will assume n > p and that X is of rank p

• We will assume that the elements of ϵ are independent, and

• have zero mean and constant variance σ2, i.e. var(ϵi) = σ2 or,
equivalently, var(ϵ) = σ2I.

• Quite often we assume the ϵi follow a Normal distribution, i.e.
ϵ ∼ N(0, σ2I)
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Basic results

• We have β̂ = (XTX)−1XTy - the least squares estimator

• Fitted values are ŷ = Xβ̂ = Py, with P = X(XTX)−1XT

• Estimated residuals are ϵ̂ = y − ŷ = (I − P )y

• P is projection onto column space of X, so P 2 = P - and
hence (I − P )2 = I − P

• We say P and I − P are idempotent.

• Note also E[
∑

ϵ̂2i ] = E[yT (I − P )y] and this is
E[ϵT (I − P )ϵ] = tr(E[(I − P )ϵϵT ]) = σ2tr(I − P ) and this
is (n− p)σ2, which leads to σ̂2 = yT (I − P )y/(n− p)

Note use of tr(ABC) = tr(CAB) = tr(BCA) where tr(·) is the trace
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Do we need Normality?

• If ϵ are assumed to be Normal, β̂ is the maximum likelihood
estimator, and this is known to have optimal properties.

• What if var(ϵ) = σ2I, i.e. constant variance but not Normal?

• Remember the Gauss-Markov theorem.

• Among all unbiased estimators of β that are linear in y, the
least squares estimator minimises the variance.

• Consider Ay: if unbiased then AX = I and variance is
σ2AAT . Also

AAT−(XTX)−1 = AAT−AX(XTX)−1XTAT = A(I−P )AT

and as this is non-negative definite, the result follows

J N S Matthews The Wrong Model



Background Model checks Some important diagnostics Practical matters Omissions

Some consequences for model checking

• E[ϵ̂] = (I − P )E[y] = (I − P )Xβ = 0

• Also, if the model is right,
cov[ϵ̂, ŷ] = E[ϵ̂ŷT ] = (I − P )E[yyT ]P = 0, i.e. the fitted
values and residuals are uncorrelated.

• If xC
j is the jth column of X, then

xCT
j ϵ̂ = xCT

j (I − P )y = 0, as xC
j is trivially in column space

of X

• In particular
∑

ϵ̂i = 1T ϵ̂ = 0, provided there is an intercept in
the model [or something equivalent]. So the sample mean of
residuals is identically zero if there is an intercept.
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Practice I

• Most methods stem from idea that ϵ̂ will be ‘like’ ϵ

• Inadequacies in Xβ and in assumptions of constant σ2 are
expected to feed into ϵ̂
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Practice II

• If model is OK, ϵ is unrelated to covariates and has constant
variance

• Proceed, at least initially, assuming this also applies to ϵ̂
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Variance of ϵ̂

• Consider the OI data. Spread seems to increase with age

• Assumed spread of ϵi does not change with age

• So plot of ϵ̂i should reveal this?

• Is the spread of ϵ̂i constant? Better check.

• var[ϵ̂] = var[(I − P )y] = σ2(I − P )

• So var(ϵ̂i) = σ2(1− hi), with hi being ith diagonal element of
P

• So constant variance of ϵi does not, in general, imply constant
variance of ϵ̂i

• Depends on properties of the hi - the leverages

• These feature a lot in the following, so worthy of some
exploration
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Leverages I

• Leverages depend only on covariates, not on y

• They reflect the potential an observation at xi has to affect β̂

• Consider fictitious data with outcome y, single covariate x
and n = 30
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Leverages: 0 ≤ hi ≤ 1

• Any symmetric, idempotent matrix, A, is non-negative
definite, viz.

xTAx = xTA2x = xTATAx = (Ax)T (Ax) ≥ 0

• Apply this to A = P and A = I − P , with x = ei, the
vector with a 1 in the ith place and 0 elsewhere: this gives
hi ≥ 0 and 1− hi ≥ 0

• These limits can be achieved - consider yi = γxi + ϵi, then

hi =
x2i∑
k x

2
k

and this can be 0 and can approach 1 arbitrarily closely
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Leverages: 1
n ≤ hi ≤ 1

• If the model contains an intercept, then the lower bound
increases to 1

n

• To see this define fi = ei − 1
n1 and note that P1 = 1 as

there is an intercept in the model

• Note that fT
i Pfi must be non-negative and on expansion is

hi − 1
n

J N S Matthews The Wrong Model
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Leverages:
∑

hi = p

• This states that tr(P ) = p. Can be seen by applying cyclic
permutation identity for trace to formula for P in terms of X

• A more geometrical approach is to note that P is symmetric,
so is orthogonally diagonalisable. This gives tr(P ) =

∑
λi,

where λi are the eigenvalues of P

• As P is idempotent, the λis are all 0 or 1. Eigenvectors with
eigenvalue 1 will form a basis for the range space of X, so
there are rank(X) = p eigenvalues equal to 1

• This result gives a handle on the sizes of the hi as they have
mean p/n

• For models with intercepts, a handle on the size of all of the

elements of P comes from 1TP1 = 1T1 = n, so the mean of the

off-diagonal elements is (n− p)/[n(n− 1)], i.e. of order 1/n

J N S Matthews The Wrong Model
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Standardized residuals

• When assessing constancy of variance of residuals, sensible to
remove the variation in the variance of ϵ̂i due to factor 1− hi

• The standardized residual, r′i, is

r′i =
ϵ̂i

s
√
1− hi

=
yi − ŷi

s
√
1− hi

• Most authors take opportunity to make the residual
dimensionless by also dividing by s, the estimate of σ

• Reasonable to think this might be approximately standard
Normal - 95% of values within (-2,2)

• But not exact. Not even t-distributed as denominator is
independent of ŷi but not of yi

J N S Matthews The Wrong Model
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Deletion residuals

• Model-checking can be global (errors in specification) or local
(outliers)

• If there is an outlying value, principal concern is for how it
affects estimated parameters

• An example is a suspiciously large yi. This might ‘drag’ the
fitted line towards itself, reducing the size of the residual

• This led to notion of deletion residuals, r∗i
• Analogous to standardized residual, but with fitted value and
estimated RMS, s based on dataset with ith point omitted

J N S Matthews The Wrong Model
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Deletion residuals - detail

• In following, subscript (i) indicates an estimate/quantity
found from data with ith point removed

• So β̂(i) is deletion estimate of β, which has variance

σ2(XT
(i)X(i))

−1, with X(i) being design matrix with ith row
omitted

• Definition is

r∗i =
yi − xT

i β̂(i)

s(i)

√
1 + xT

i (X
T
(i)X(i))−1xi

• Could find simply by refitting regression n times but there is a
more elegant and insightful approach
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Deletion residuals - technicalities

• Worth noting the following three items

1 XTX =
∑

j xjx
T
j

2 XTy =
∑

j xjyj
3 xT

i (X
TX)−1xi = hi

• and also recall the Woodbury identity

(A−UV T )−1 = A−1 +A−1U(I − V TA−1U)−1V TA−1

where A is a p× p matrix and U ,V are p×m matrices

J N S Matthews The Wrong Model
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Deletion residuals - more technicalities

• Putting A = XTX, U = V = xi gives

1 + xT
i (X

T
(i)X(i))

−1xi = 1/(1− hi)

• and

β̂(i) = β̂ − (XTX)−1xiϵ̂i
1− hi

• and
(n− p− 1)s2(i) = s2(n− p− r′2i )

• And finally

r∗i = r′i

√
n− p− 1

n− p− r′2i

• Shrunk towards zero if | r′i |< 1, opposite if | r′i |> 1. N.b.
| r′i |<

√
n− p, so can be neither Normal nor t

J N S Matthews The Wrong Model
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Distributional properties of residuals: standard residuals

[hereinafter, we assume an intercept in the model]

• Consider the usual, standard, residual ϵ̂i.

• These have expectation 0 and variance σ2(1− hi)

• They are dependent -
∑

ϵ̂i = 0 (plus another p− 1 similar
constraints)

• Correlation for cases i, j is −hij/(1− hi)(1− hj)

• Normalising as ϵ̂i/s gives values still summing to 0, etc., still
independent of ŷ but not t-distributed

J N S Matthews The Wrong Model
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Properties: deletion residuals

r∗i =
yi − xT

i β̂(i)

s(i)
√
1 + xT

i (X
T
(i)X(i))−1xi

• These are t-distributed (n− p− 1 df): numerator and
denominator independent (s(i), independent of fitted value
and yi)

• So they have mean 0 and variance (n− p− 1)/(n− p− 3)

• Deletion residuals do not sum to 0, nor are they independent
of the fitted values xT

i β̂(i)
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Properties: standardized residuals I

r′i =
ϵ̂i

s
√
1− hi

=
yi − ŷi

s
√
1− hi

• These will not sum to 0 but are functions of residuals alone,
being, apart from factors depending on n, p

r′i ∝
ϵ̂i√∑

ϵ̂2k

so are independent of the ŷi

• They do have expectation zero but a proof is quite delicate, as
the numerator and denominator are dependent.
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Properties: standardized residuals II

• If ϵ is Normal, then ϵ̂ is multivariate Normal,
Nn(0, σ

2(I − P )), then ϵ̂ and −ϵ̂ have the same distribution,
so

E

 ϵ̂i√∑
j ϵ̂

2
j

 = E

 −ϵ̂i√∑
j(−ϵ̂j)2

 = −E

 ϵ̂i√∑
j ϵ̂

2
j

 ,

and so E(r′i) = 0.

• Similar argument applies if one only assumes ϵ̂ is symmetric
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Exact distribution of r′i

We start with
r′2i

n− p
=

r∗2i
n− p− 1 + r∗2i

and recall r∗i is t on n− p− 1 df.

• Remember Z/
√
χ2
ν/ν is t, with numerator and denominator

independent

• Z2 is χ2 on 1 df

• A χ2 variable is a form of Gamma variable

• If U, V are independent Gammas with same scale parameter,
then U/(U + V ) and U + V are independent, with the former
a Beta variable and the latter a Gamma.
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Exact distribution of r′i, continued

From the above we find

• r′2i is n− p times a Beta variable with parameters 1
2 and

1
2(n− p− 1).

• From this we have E[r′2i ] = 1

• Can be shown correlation between r′i, r
′
j is

−hij/(1− hi)(1− hj)

J N S Matthews The Wrong Model
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Does it matter?

• To compare all residuals directly, need scaled residual, ϵ̂i/s so all
dimensionless

• Consider OI data
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What to do next?

• Different types of residuals differ little

• Clear from all that for OI data, σ2 increases with age.

• What should be done about it?
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Model revision

• If some of the diagnostic plots suggest model inadequacies,
what to do?

• Should not adopt an approach that is too algorithmic

• Diagnostic plots might guide thinking but changes should be
rooted in the context

• Increasing OI with age and increasing variance - perhaps error
variance is multiplicative?

• ?Try modelling log OI
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Trying log OI
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Looks better - can probably stop model revision here.
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What isn’t in this lecture

• Cook’s statistic - measures effect of individual point on parameter
estimates

Di =
(β̂(i) − β̂)TXTX(β̂(i) − β̂)

ps2
=

(ŷ(i) − ŷ)T (ŷ(i) − ŷ)

ps2

=
r′2i hi

p(1− hi)
,

• Very relevant aim but I haven’t used them much

1 Considers all parameters - would often want to focus on
particular items, e.g. treatment effects

2 Puts items on a dimensionless scale but often more meaningful
on original scale

3 Seldom interested in looking at omission of all points, rather
than a few suspicious ones
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Normal probability plots

• Main omission is no assessment of whether the ϵi are Normal?

• Usually done with Normal probability plots

• Although there are tests of Normality

• This is for another exciting episode
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