How to spot it

J N S Matthews

Biostatistics Research Group, Newcastle University

Genesis of approach

- Most statistical models make assumptions and the usual approach to checking them is to fit the model and then examine various diagnostic quantities.
- Approach depends on software to make fitting a model straightforward and quick.
- Software became available in the early 1980s and led to many new diagnostic quantities being defined, largely focussed on continuous outcomes
- Several books from that era.
 - 1 Belsley, Kuh & Welsch, 1980
 - 2 Cook & Weisberg, 1982
 - 3 Atkinson, 1985
- We will cover some aspects of these now-familiar quantities

Regression equation and familiar results

- Outcomes are in y, an n-dim vector
- Design matrix is \boldsymbol{X} , an $n \times p$ matrix
- β is a p-dim vector of parameters
- ϵ is an n-dim vector of residuals

and

Background

$$y = X\beta + \epsilon$$

Elements of vectors will be denoted in usual way - i.e. y_i is ith element of \boldsymbol{y} ,

Some assumptions

Background

ററക്ററ

- We will assume n > p and that \boldsymbol{X} is of rank p
- ullet We will assume that the elements of ϵ are independent, and
- have zero mean and constant variance σ^2 , i.e. $var(\epsilon_i) = \sigma^2$ or, equivalently, $var(\epsilon) = \sigma^2 I$.
- Quite often we assume the ϵ_i follow a Normal distribution, i.e. $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$

Basic results

- ullet We have $\hat{oldsymbol{eta}} = (oldsymbol{X}^Toldsymbol{X})^{-1}oldsymbol{X}^Toldsymbol{y}$ the least squares estimator
- ullet Fitted values are $\hat{m{y}} = m{X}\hat{m{eta}} = m{P}m{y}$, with $m{P} = m{X}(m{X}^Tm{X})^{-1}m{X}^T$
- ullet Estimated residuals are $\hat{oldsymbol{\epsilon}} = oldsymbol{y} \hat{oldsymbol{y}} = (oldsymbol{I} oldsymbol{P}) oldsymbol{y}$
- $oldsymbol{P}$ is projection onto column space of $oldsymbol{X}$, so $oldsymbol{P}^2 = oldsymbol{P}$ and hence $(oldsymbol{I} oldsymbol{P})^2 = oldsymbol{I} oldsymbol{P}$
- ullet We say $oldsymbol{P}$ and $oldsymbol{I}-oldsymbol{P}$ are idempotent.
- Note also $\mathsf{E}[\sum \hat{\epsilon}_i^2] = \mathsf{E}[\boldsymbol{y}^T(\boldsymbol{I}-\boldsymbol{P})\boldsymbol{y}]$ and this is $\mathsf{E}[\boldsymbol{\epsilon}^T(\boldsymbol{I}-\boldsymbol{P})\boldsymbol{\epsilon}] = \mathrm{tr}(\mathsf{E}[(\boldsymbol{I}-\boldsymbol{P})\boldsymbol{\epsilon}\boldsymbol{\epsilon}^T]) = \sigma^2\mathrm{tr}(\boldsymbol{I}-\boldsymbol{P})$ and this is $(n-p)\sigma^2$, which leads to $\hat{\sigma}^2 = \boldsymbol{y}^T(\boldsymbol{I}-\boldsymbol{P})\boldsymbol{y}/(n-p)$

Note use of $\operatorname{tr}(ABC) = \operatorname{tr}(CAB) = \operatorname{tr}(BCA)$ where $\operatorname{tr}(\cdot)$ is the trace

Do we need Normality?

- If ϵ are assumed to be Normal, $\hat{\beta}$ is the maximum likelihood estimator, and this is known to have optimal properties.
- What if $var(\epsilon) = \sigma^2 I$, i.e. constant variance but not Normal?
- Remember the Gauss-Markov theorem.
- Among all unbiased estimators of β that are linear in y, the least squares estimator minimises the variance.
- Consider Ay: if unbiased then AX = I and variance is $\sigma^2 AA^T$. Also

$$AA^{T} - (X^{T}X)^{-1} = AA^{T} - AX(X^{T}X)^{-1}X^{T}A^{T} = A(I - P)A^{T}$$

and as this is non-negative definite, the result follows

Some consequences for model checking

- $\mathsf{E}[\hat{\boldsymbol{\epsilon}}] = (\boldsymbol{I} \boldsymbol{P})\mathsf{E}[\boldsymbol{y}] = (\boldsymbol{I} \boldsymbol{P})\boldsymbol{X}\boldsymbol{\beta} = 0$
- Also, if the model is right, $\operatorname{cov}[\hat{\boldsymbol{\epsilon}},\hat{\boldsymbol{y}}] = \mathsf{E}[\hat{\boldsymbol{\epsilon}}\hat{\boldsymbol{y}}^T] = (\boldsymbol{I} - \boldsymbol{P})\mathsf{E}[\boldsymbol{y}\boldsymbol{y}^T]\boldsymbol{P} = 0$, i.e. the fitted values and residuals are uncorrelated.
- If x_i^C is the jth column of X, then $m{x}_i^{CT}\hat{m{\epsilon}} = m{x}_i^{CT}(m{I} - m{P})m{y} = 0$, as $m{x}_i^C$ is trivially in column space of X
- In particular $\sum \hat{\epsilon}_i = \mathbf{1}^T \hat{\epsilon} = 0$, provided there is an intercept in the model [or something equivalent]. So the sample mean of residuals is identically zero if there is an intercept.

Practice I

Background

- Most methods stem from idea that $\hat{\epsilon}$ will be 'like' ϵ
- Inadequacies in $X\beta$ and in assumptions of constant σ^2 are expected to feed into $\hat{\epsilon}$

O'Sullivan et al.

Perros et al.

Practice II

- If model is OK, ϵ is unrelated to covariates and has constant variance
- ullet Proceed, at least initially, assuming this also applies to $\hat{\epsilon}$

Non-random pattern

Spread increases with age

Variance of $\hat{\epsilon}$

- Consider the OI data. Spread seems to increase with age
- Assumed spread of ϵ_i does not change with age
- So plot of $\hat{\epsilon}_i$ should reveal this?
- Is the spread of $\hat{\epsilon}_i$ constant? Better check.
- $\operatorname{var}[\hat{\boldsymbol{\epsilon}}] = \operatorname{var}[(\boldsymbol{I} \boldsymbol{P})\boldsymbol{y}] = \sigma^2(\boldsymbol{I} \boldsymbol{P})$
- So $var(\hat{\epsilon}_i) = \sigma^2(1 h_i)$, with h_i being ith diagonal element of \boldsymbol{P}
- So constant variance of ϵ_i does not, in general, imply constant variance of $\hat{\epsilon}_i$
- Depends on properties of the h_i the leverages
- These feature a lot in the following, so worthy of some exploration

Leverages I

- ullet Leverages depend only on covariates, not on y
- ullet They reflect the potential an observation at x_i has to affect $\hat{oldsymbol{eta}}$
- Consider fictitious data with outcome y, single covariate x and n=30

- Red square $h_i = 0.139$
- Blue square $h_i = 0.034$

Leverages: $0 < h_i < 1$

Background

 Any symmetric, idempotent matrix, A, is non-negative definite, viz.

$$\boldsymbol{x}^T \boldsymbol{A} \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{A}^2 \boldsymbol{x} = \boldsymbol{x}^T \boldsymbol{A}^T \boldsymbol{A} \boldsymbol{x} = (\boldsymbol{A} \boldsymbol{x})^T (\boldsymbol{A} \boldsymbol{x}) \ge 0$$

- Apply this to A=P and A=I-P, with $x=e_i$, the vector with a 1 in the ith place and 0 elsewhere: this gives $h_i > 0$ and $1 - h_i > 0$
- These limits can be achieved consider $y_i = \gamma x_i + \epsilon_i$, then

$$h_i = \frac{x_i^2}{\sum_k x_k^2}$$

and this can be 0 and can approach 1 arbitrarily closely

Practical matters

Leverages: $\frac{1}{n} \leq h_i \leq 1$

- If the model contains an intercept, then the lower bound increases to $\frac{1}{n}$
- ullet To see this define $f_i=e_i-rac{1}{n}\mathbf{1}$ and note that $P\mathbf{1}=\mathbf{1}$ as there is an intercept in the model
- Note that $f_i^T P f_i$ must be non-negative and on expansion is $h_i - \frac{1}{n}$

- This states that tr(P) = p. Can be seen by applying cyclic permutation identity for trace to formula for P in terms of X
- A more geometrical approach is to note that P is symmetric, so is orthogonally diagonalisable. This gives $\operatorname{tr}(P) = \sum \lambda_i$, where λ_i are the eigenvalues of P
- As P is idempotent, the λ_i s are all 0 or 1. Eigenvectors with eigenvalue 1 will form a basis for the range space of X, so there are $\operatorname{rank}(X) = p$ eigenvalues equal to 1
- This result gives a handle on the sizes of the h_i as they have mean p/n
- For models with intercepts, a handle on the size of all of the elements of P comes from $\mathbf{1}^T P \mathbf{1} = \mathbf{1}^T \mathbf{1} = n$, so the mean of the off-diagonal elements is (n-p)/[n(n-1)], i.e. of order 1/n

Standardized residuals

- When assessing constancy of variance of residuals, sensible to remove the variation in the variance of $\hat{\epsilon}_i$ due to factor $1-h_i$
- The standardized residual, r_i' , is

$$r_i' = \frac{\hat{\epsilon}_i}{s\sqrt{1 - h_i}} = \frac{y_i - \hat{y}_i}{s\sqrt{1 - h_i}}$$

- Most authors take opportunity to make the residual dimensionless by also dividing by s, the estimate of σ
- Reasonable to think this might be approximately standard Normal - 95% of values within (-2,2)
- But not exact. Not even t-distributed as denominator is independent of \hat{y}_i but not of y_i

Deletion residuals

- Model-checking can be global (errors in specification) or local (outliers)
- If there is an outlying value, principal concern is for how it affects estimated parameters
- An example is a suspiciously large y_i . This might 'drag' the fitted line towards itself, reducing the size of the residual
- This led to notion of deletion residuals, r_i^*
- Analogous to standardized residual, but with fitted value and estimated RMS, s based on dataset with ith point omitted

etion residuais detail

- In following, subscript (i) indicates an estimate/quantity found from data with ith point removed
- So $\hat{\beta}_{(i)}$ is deletion estimate of β , which has variance $\sigma^2(\boldsymbol{X}_{(i)}^T\boldsymbol{X}_{(i)})^{-1}$, with $\boldsymbol{X}_{(i)}$ being design matrix with ith row omitted
- Definition is

$$r_i^* = \frac{y_i - x_i^T \hat{\beta}_{(i)}}{s_{(i)} \sqrt{1 + x_i^T (X_{(i)}^T X_{(i)})^{-1} x_i}}$$

• Could find simply by refitting regression n times but there is a more elegant and insightful approach

Deletion residuals - technicalities

- Worth noting the following three items

 - $\mathbf{2} \ \mathbf{X}^T \mathbf{y} = \sum_i \mathbf{x}_i y_i$
 - 3 $x_i^T (X^T X)^{-1} x_i = h_i$
- and also recall the Woodbury identity

$$(A - UV^{T})^{-1} = A^{-1} + A^{-1}U(I - V^{T}A^{-1}U)^{-1}V^{T}A^{-1}$$

where \boldsymbol{A} is a $p \times p$ matrix and $\boldsymbol{U}, \boldsymbol{V}$ are $p \times m$ matrices

Deletion residuals - more technicalities

ullet Putting $oldsymbol{A} = oldsymbol{X}^T oldsymbol{X}$, $oldsymbol{U} = oldsymbol{V} = oldsymbol{x}_i$ gives

$$1 + \boldsymbol{x}_i^T (\boldsymbol{X}_{(i)}^T \boldsymbol{X}_{(i)})^{-1} \boldsymbol{x}_i = 1/(1 - h_i)$$

and

$$\hat{\boldsymbol{\beta}}_{(i)} = \hat{\boldsymbol{\beta}} - \frac{(\boldsymbol{X}^T \boldsymbol{X})^{-1} \boldsymbol{x}_i \hat{\epsilon}_i}{1 - h_i}$$

and

$$(n-p-1)s_{(i)}^2 = s^2(n-p-r_i^2)$$

And finally

$$r_i^* = r_i' \sqrt{\frac{n-p-1}{n-p-r_i'^2}}$$

• Shrunk towards zero if $\mid r_i' \mid <1$, opposite if $\mid r_i' \mid >1$. N.b. $\mid r_i' \mid <\sqrt{n-p}$, so can be neither Normal nor t

Distributional properties of residuals: standard residuals

[hereinafter, we assume an intercept in the model]

- Consider the usual, standard, residual $\hat{\epsilon}_i$.
- These have expectation 0 and variance $\sigma^2(1-h_i)$
- They are dependent $\sum \hat{\epsilon}_i = 0$ (plus another p-1 similar constraints)
- Correlation for cases i, j is $-h_{ij}/(1-h_i)(1-h_j)$
- Normalising as $\hat{\epsilon}_i/s$ gives values still summing to 0, etc., still independent of \hat{y} but not t-distributed

Properties: deletion residuals

$$r_i^* = \frac{y_i - x_i^T \hat{\beta}_{(i)}}{s_{(i)} \sqrt{1 + x_i^T (X_{(i)}^T X_{(i)})^{-1} x_i}}$$

- These are *t*-distributed (n-p-1) df): numerator and denominator independent $(s_{(i)})$, independent of fitted value and y_i)
- So they have mean 0 and variance (n-p-1)/(n-p-3)
- Deletion residuals do not sum to 0, nor are they independent of the fitted values $m{x}_i^T \hat{m{\beta}}_{(i)}$

Properties: standardized residuals I

$$r_i' = \frac{\hat{\epsilon}_i}{s\sqrt{1 - h_i}} = \frac{y_i - \hat{y}_i}{s\sqrt{1 - h_i}}$$

 These will not sum to 0 but are functions of residuals alone. being, apart from factors depending on n, p

$$r_i' \propto \frac{\hat{\epsilon}_i}{\sqrt{\sum \hat{\epsilon}_k^2}}$$

so are independent of the \hat{y}_i

 They do have expectation zero but a proof is quite delicate, as the numerator and denominator are dependent.

Properties: standardized residuals II

• If ϵ is Normal, then $\hat{\epsilon}$ is multivariate Normal, $N_n(\mathbf{0}, \sigma^2(\mathbf{I} - \mathbf{P}))$, then $\hat{\epsilon}$ and $-\hat{\epsilon}$ have the same distribution, SO

$$\mathsf{E}\left(\frac{\hat{\epsilon}_i}{\sqrt{\sum_j \hat{\epsilon}_j^2}}\right) = \mathsf{E}\left(\frac{-\hat{\epsilon}_i}{\sqrt{\sum_j (-\hat{\epsilon}_j)^2}}\right) = -\mathsf{E}\left(\frac{\hat{\epsilon}_i}{\sqrt{\sum_j \hat{\epsilon}_j^2}}\right),$$

and so $E(r_i')=0$.

• Similar argument applies if one only assumes $\hat{\epsilon}$ is symmetric

Exact distribution of r'_i

We start with

Background

$$\frac{r_i'^2}{n-p} = \frac{r_i^{*2}}{n-p-1+r_i^{*2}}$$

and recall r_i^* is t on n-p-1 df.

- Remember $Z/\sqrt{\chi_{\nu}^2/\nu}$ is t, with numerator and denominator independent
- Z^2 is χ^2 on 1 df
- A χ^2 variable is a form of Gamma variable
- If U, V are independent Gammas with same scale parameter, then U/(U+V) and U+V are independent, with the former a Beta variable and the latter a Gamma.

Exact distribution of r'_i , continued

From the above we find

- $r_i'^2$ is n-p times a Beta variable with parameters $\frac{1}{2}$ and $\frac{1}{2}(n-p-1)$.
- From this we have $E[r_i^2] = 1$
- Can be shown correlation between r_i', r_j' is $-h_{ij}/(1-h_i)(1-h_j)$

Does it matter?

- To compare all residuals directly, need scaled residual, $\hat{\epsilon}_i/s$ so all dimensionless
- Consider OI data

scaled black, deletion red

standardized blue, deletion red

What to do next?

- Different types of residuals differ little
- Clear from all that for OI data, σ^2 increases with age.
- What should be done about it?

Model revision

- If some of the diagnostic plots suggest model inadequacies, what to do?
- Should not adopt an approach that is too algorithmic
- Diagnostic plots might guide thinking but changes should be rooted in the context
- Increasing OI with age and increasing variance perhaps error variance is multiplicative?
- ?Try modelling log OI

Trying log OI

Looks better - can probably stop model revision here.

What isn't in this lecture

Background

 Cook's statistic - measures effect of individual point on parameter estimates

$$\begin{split} D_i &= \frac{(\hat{\pmb{\beta}}_{(i)} - \hat{\pmb{\beta}})^T \pmb{X}^T \pmb{X} (\hat{\pmb{\beta}}_{(i)} - \hat{\pmb{\beta}})}{ps^2} = \frac{(\hat{\pmb{y}}_{(i)} - \hat{\pmb{y}})^T (\hat{\pmb{y}}_{(i)} - \hat{\pmb{y}})}{ps^2} \\ &= \frac{r_i'^2 h_i}{p(1 - h_i)}, \end{split}$$

- Very relevant aim but I haven't used them much
 - 1 Considers all parameters would often want to focus on particular items, e.g. treatment effects
 - 2 Puts items on a dimensionless scale but often more meaningful on original scale
 - 3 Seldom interested in looking at omission of all points, rather than a few suspicious ones

Normal probability plots

- Main omission is no assessment of whether the ϵ_i are Normal?
- Usually done with Normal probability plots
- Although there are tests of Normality
- This is for another exciting episode