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Part I: how to spot it
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1 Some well-known background

This document focuses on the linear model, and as such is largely relevant to
continuous data. We will be concerned with what model checks are needed
and how best to carry these out. Many things in this document will be well-
known and will refer to things that are very familiar when using standard
software - especially when making choices for things like the types of residu-
als. The emphasis here will be on some of the theoretical and mathematical
aspects that have been used in the development of these things, and which
by now might be a slightly hazy memory.

Throughout it is supposed that there are n observations, y;,i = 1,...,n and
that these can be written as an n-dimensional vector y. It is supposed that
there are p covariates and that the covariates corresponding to observation
1 are written as a p-dimensional vector x; and these can be grouped in an
n X p matrix X, where the 7 form the rows, i.e.
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The number of covariates is p and it is tacitly assumed in much of the fol-
lowing that an intercept is included, i.e. the first element of each x; is 1. In
parts of the literature the number of covariates is sometimes written as p+ 1
to emphasise the inclusion of an intercept, with p now being the number of
covariates other than the intercept.

Of course, the vast majority of models that we fit in practice include an inter-
cept. The reason for drawing attention to the usual presence of an intercept
is that quite a few of the very familiar results we will encounter are true
only when an intercept is included, and this can easily be overlooked. For
example, the residuals from a model fitting a single (non-constant) covariate
without an intercept, do not sum to zero.

The usual model that we fit is

Yi = ﬁTiL‘i + €, (1)

where the residual, €;, has zero mean and variance % and B is the p-
dimensional vector of the parameters associated with the p covariates. It
is also assumed that the residual terms corresponding to different is are un-
correlated. These conditions are often supplemented with the assumption
that the ¢; are Normally distributed (and hence independent), which permits
certain hypothesis tests and interval estimates to be specified.

A more succinct description of key results is obtained if we write (1) in matrix
terms as

y=XB+e,

where € is the n-dimensional random vector of the ¢;s. If the residuals are
assumed to be Normally distributed then the maximum likelihood estimate
(MLE) of 3 is well-known to be

B=(X"X)"X"y; (2)

here and throughout we assume that n > p and X is of full rank p. The
fitted values are y = X3 = Py, where

P=X(XTx)'x"

is the projection matrix onto the column space of X, sometimes called the
‘hat’” matrix (and so some authors use H in place of P). It should be noted
that P = PT and P is idempotent, i.e. P = P2



The estimated residuals, € are defined as y — gy = (I — P)y, where I is the
identity matrix of appropriate dimension. Note that E[€] = (I — P)E[y] =
(I — P)Xp3 =0, ie. the estimated residuals have mean zero.

It should also be noted that it follows that cov[€,y] = E[ég”], and this is
(I — P)E[yy"|P = (I — P)(XBBTXT +0?I)P = 0. That is, assuming the
model it correct, the fitted values and estimated residuals are uncorrelated
(so independent if Normality is assumed).

The estimated residuals have some constraints. If acJC denotes the jth column
of X, then é’x§ = y" (I — P)z¢. Now as ¢ is in the column space of X,
then P:I;jc = :Bjc, SO éijc = 0. If the model contains an intercept, then
x¢ = 1, where 1 is a vector of ones of suitable dimension, so it follows that

> € =0, i.e. the residuals sum to zero and hence have a sample mean of 0.

The sum of squares of the estimated residuals, > €2, provides the basis for
the estimation of o2, Dividing by n gives the MLE, but it is more usual to
divide by n — p to get an unbiased estimator of o?. To see this note *

E|>é] = Ely" (I - P)y] = E[€"(I - P)e] = E[tr((I — P)ec”)
= tr((I — P)E[e€’]) = o*tr(I — P) = o*(n —p)

(For an explanation why tr(P) = p, see 3.4

1.1 The Gauss-Markov theorem

The estimator (2) has the optimal properties that comes from maximum like-
lihood, provided the € have a Normal distribution. The form of the Normal
density means that (2) is also the least squares estimator (LSE). While it is
geometrically plausible that the LSE performs well, even if € is not Normal,
can more be said?

The answer is provided by the Gauss-Markov theorem. If the ¢; are inde-
pendent, with common variance, then (2) has the smallest variance among
all estimators that are linear in y and unbiased for 3. To see this, note that

'We use the matrix identity tr(ABC) = tr(CAB) = tr(BCA), where tr(-) denotes the
trace, or sum of diagonal elements, of the matrix



Ay is unbiased for 3 if AX = I, and has variance 02 AAT. Also
AAT - (XTX) ' =AAT - AX(XTX)'XTAT = A(I - P)A". (3)

As P is idempotent and symmetric, so is I — P and from this is follows that
the final term in (3) is positive definite, so the variance of any contrast based
on Ay exceeds that based on the LSE.

So, if our model checking reveals non-Normality, but no heteroscedasticity,
then the estimator (2), still has much to commend it.

2 Model checking

2.1 Some general considerations

Ideally any statistical model should be chosen to:
1. enable the analyst to address the questions being posed;
2. take account of knowledge of the subject area;

3. take into account any lessons that may be available from previous anal-
yses in the area.

What might these worthy aims actually mean in practice? This is likely to
vary between areas of application. For clinical trials, items 1 and 2 would
include things like ensuring that broadly the right covariates are specified,
while restricting the range of models being considered to ensure that issues
of multiplicity are kept in check. Items 2 and 3 might lead the investigator to
choose appropriate scales for measurement. Some variables such as skin-fold
thickness and bilirubin concentration, are known to be skewed, so logging
them may be helpful, whether they are response variables, when transfor-
mation may provide better distributional properties, or are covariates, when
transformation may prevent undue influence of larger values.

Item 1 also implies that there may be specific parameters, such as a treatment
effect in a clinical trial, that are of overriding importance. In such cases, the
extent to which interval estimates of the parameter vary between alternative,
plausible models will determine the importance of the precise choice of model.



2.2 Model checking - diagnostics

One might hope that, for a carefully chosen model, most of the assumptions
are going to be right, or close to right. Nevertheless, it will usually be pru-
dent to conduct some checks on the fitted model. This will usually entail
fitting a model, computing suitable quantities known as model diagnostics
and then assessing whether these diagnostics have the properties that they
should have if the fitted model is broadly correct.

The hope is that the form of any departures from the expected properties
will indicate how the model might be amended so that its assumptions more
nearly hold true. Sometimes the departures will indicate that general as-
pects of the model need to be changed, such as transforming the response
or altering the form of a covariate. However, such diagnostics are often very
good at identifying individual points in the data that are out of line with
the rest of the data. Omitting such points is a possibility, but there may
be circumstances where such a step might be difficult to justify. With such
unusual cases it is helpful to assess whether they have played a significant
role in the determination of the model parameters, or even on the choice
of detailed form of the model - i.e. the influence of the point needs to be
considered.

The assumed model, y = X3 + €, has several components, each of which
needs to be considered

1. The form, X3, of the assumed mean of y can be assessed by simple
graphs. Another approach is to fit an extended model and see if this
improves the fit, e.g. by adding a quadratic term to a linear term and
testing if there is evidence that the coefficient of the quadratic term is
not zero.

2. An alternative is to compute the estimated residuals®, ¢ = y; — xX 3,
and plot these against variables in the model, or variables which might
have been included. Patterns in the plots can indicate if a term should
have been included or if its form needs to be modified.

2Hereafter, for succinctness and when the context makes it clear, residual may mean
either ¢; or €;.



3. The ¢; are assumed to be independent, have zero mean, constant vari-
ance and, perhaps, a Normal distribution. The estimated residuals are
the natural quantities to assess these assumptions.

(a) In many applications the assumption of independence of the ¢; is
taken as read from the context. Common situations where this
might be violated, such as repeated measures on an individual
or observations within some group, such as a cluster in a cluster
randomized trial, will usually have been noticed during the design
of the study, with the analysis specified accordingly.

(b) The fitted residuals will have zero mean, i.e. > & = 0 because of
the properties of the usual methods of estimation, provided that
the model contains an intercept.

(c) Assessing constancy of variance, and if needed, Normality, can be
based on the estimated residuals, but a number of issues arise that
complicate matters, at least in principle. Much of the next section
will focus on these.

4. Common ways to use residuals to assess model fit are generally graph-
ical. Plots of the ¢ against covariates, or possible covariates can be
useful. As with most of these residuals plots, no pattern is what is
sought - if the model is correct then the ¢; are just independent noise.
Patterns can suggest a missing covariate should be included, or an in-
cluded covariate is not in the right form. Patterns might also suggest
that the ¢; do not have constant variance. If the model is correct then
we have seen that the estimated residuals, ¢; and the fitted values, y;
are uncorrelated and a plot of these quantities should exhibit no rela-
tionship. Two example will illustrate some of these features.

The first example concerns the onset times (in ms) for evoked muscle
contractions against age (with term being 0 years and determinations
in preterm infants using negative ages): the data are related to those
in O’Sullivan et al. (1998). Figure 1(a) shows the data and a fitted
regression line, whereas Figure 1(b) plots the residuals against age.
This shows a clear pattern, with almost only positive residuals in late
teenage to early twenties and largely negative values in the later ages.
If the €; were genuinely uncorrelated, with zero mean and constant vari-
ance, then this would not happen. In fact, looking at Figure 1(a) and
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Figure 1: Data on onset times related to study in (O’Sullivan et al., 1998)
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Figure 2: Data on ophthalmic index (OI) versus age in 101 patients with Graves’
ophthalmopathy (Perros et al., 1993)

appreciating the area of application, it is likely that a curve rising to
an asymptote would be far more suitable than a straight line.



The second example concerns data on 101 patients with Graves’ oph-
thalmopathy (Perros et al., 1993). The ophthalmic index (OI) is a
measure of the ophthalmic health of the individual, with larger val-
ues corresponding to poorer ophthalmic performance. The issue here
seems to be that the spread of the data about the line increases for
older patients. Although this can be seen in Figure 2(a), it is clearer
when residuals are plotted against age, as in Figure 2(b). This suggests
that the assumption of constant variance of the ¢; is questionable.

5. If the analyst wishes to use the assumption of Normality of the ¢;, then
Normal probability plots of the €; might be useful.

3 Types of residual

The ideas rehearsed in the previous section essentially try to confirm or re-
fute the properties of the €; on the basis of those of ¢;. However, some salient
features of the ¢;, such as constant variance, are not reflected in the cor-
responding features of the ¢; and, at least in principle, this can complicate
the process of drawing conclusions about the residuals on the basis of their
estimates.

An important quantity in this respect is the dispersion matrix of €. That of
€ is 0?1, whereas that of € is:

var(é) = var((I — P)y) = (I — P)o’I(I — P)" = o*(I — P)

where we have used the symmetry of P and the fact that the idempotence
of P implies that of I — P. Thus the variance of ¢; is proportional to the ith
diagonal element of I—P. As mentioned, while authors are split over whether
to write P or H for the projection, or ‘hat’ matrix, there is unanimity on
the use of h for the individual elements of this matrix. As the off-diagonal
elements of P are of less interest, the diagonal elements are often shortened
to h; instead of h;;. Consequently,

var(;) = o(1 — hy). (4)

The quantities h; are known as the leverages and play an important role
in the definition of more sophisticated forms of residuals. They are not, in



general, constant, so (4) indicates that the constant variance of the ¢; does
not necessarily lead to the constant variance of the €;. In the following the
h; play an important role, so it is useful to consider their properties in more
detail.

3.1 Leverages

Leverages measure the effect that a point with the given covariates can po-
tentially have on the fitted line. They are functions of the covariates alone,
not of the y;. The larger the value, the greater may be the effect of an
observation at that point.

In Figure 3, it is clear that at the location of the red point, i.e. with z; = 13.7,
then the effect of the observed y; could have a much more marked effect on
the parameter estimates, than is likely for the value of y; observed at the
blue point (z; = 9.79). This is reflected in the larger leverage value for the
red point, h; = 0.139, compared with that for the blue point h; = 0.034. In
general, and certainly for models including an intercept, values further from
the centroid of the data potentially have greater influence, which is reflected
in larger leverages. Note that for the data in Figure 3, the mean of the x
values is 9.99.

Assessing the value of a leverage is helped by knowing a few of their math-
ematical properties. In the following e; denotes a vector with 1 in the ith
place and 0 elsewhere.

3.2 Foralli 0<h; <1

Matrices that are idempotent and symmetric are non-negative definite. There
are various way to see this - e.g. the eigenvalues of such matrices must be
0 or 1. A simple algebraic argument is to note that 7 Ax = 7 A%x =
T AT Az = (Axz)"(Az) > 0. Consequently, we have that for any x, both
! Pz and ' (I — P)x are non-negative. then setting = e; in the above
shows that A; > 0 and 1 — h; > 0.

In general, these bounds can be attained. Consider the model without an
intercept in which E(y;) = vyx;. The leverages for this model are:

2
Z;
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Figure 3: Leverages from a simple regression model with n = 30: for red square
x; = 13.70, h; = 0.139; for blue square z; = 9.79, h; = 0.034.

Any point with z; = 0 will have h; = 0. This is no surprise - the effect
on the fitted line of an observation with x; = 0 is zero because the line has
to pass through the origin. If all but one of the xs are small with, say, z;
being substantially larger than the other values, then this point will be very
influential in determining the estimate of ~. This is reflected in the value of
h;, which will approach 1 arbitrarily closely as x; increases in magnitude.

10



3.3 For models including an intercept, % <h; <1

If there is an intercept in the model, then the n-dimensional vector of ones,
1, is one of the columns of X. As P is the projection onto the column space
of X, P1 =1. Define

fi=ei— %17
then expanding fI Pf; gives
1 17e; 1M1 1
eZ-TPeZ-—eZ _ =€ + 5 =hi——
n n n n

and this must be non-negative. If there is a general mean in the model then
all observations will have some effect on the estimated parameters, so zero
values of h; will not occur; this result indicates the value of the lower bound.
If the model only has an intercept, then all the h; are 1/n.

3.4 The leverages sum to the number of parameters,
Y hi=p
As > h; = tr(P), this result can be seen algebraically by applying the iden-
tity tr(ABC) = tr(BCA) = tr(CAB) to the formula for P in terms of
X.
A more geometrical approach is to note that tr(P) = > A;, where the As are
the eigenvalues of P. As P is idempotent, these are all 0 or 1. Moreover, as
P is the projection onto the column space of X, and as X is of full rank,
then this space has dimension p, which must be the same as the number of
eigenvalues equal to 1.
Either way, this result shows that the mean leverage is p/n, which can help
in interpreting these quantities. For example, in Figure 3 the mean leverage
is 2/30 ~ 0.0667, so the red point has a leverage much larger than the mean,
whereas that of the blue point is smaller.

Some idea of the size of the off-diagonal elements of P is available for models

which include an intercept. The sum of all of the elements of P is 17 P1 =
171 = n. So the mean of the off-diagonal elements of P is (n—p)/[n(n—1)].

11



3.5 Standardized and deletion residuals

Consider the example in Figure 2(b). It appears that the spread of the
residuals is not constant. This could be because the variance of the €;, namely
o?(1 — h;) is not constant, not because var(¢;) changes with age but because
of the factor 1 — h;. So it would be sensible to take steps to remove this
potential source of confusion.

3.5.1 Standardized residuals

The changing variance of the simple residual, €;, can be removed by dividing
by v/1 — h;. However, most authors combine the step of removing variation
in variance with putting the residuals on a dimensionless scale, giving the
standardized residual as

A

o € _ Yi — Ui (5>
! 8\/1—hl‘ S\/l—hi’

where s? is the estimate of 02 provided by the residual mean square®. The
advantage of including s in the standardization is that it produces values
independent of the scale on which observations were made. Moreover, if the
¢; are at least approximately Normal, then the values of the 7, might be ex-
pected to be similar to a standard Normal distribution, so these would be
familiar to most analysts, so e.g. values outside the interval (-2,2) might
attract attention, depending on sample size, of course.

It is perhaps worth making some comments about the distribution of the r;.

1. While it is reasonable to think that the 7} will be approximately Normal,
this cannot be exact. While the numerator is Normal, provided that the
€; are, the division by the random variable s means that the ratio is not
exactly Normal (although for many practical purposes the departure is
not serious).

2. One might think that a quantity obtained by dividing a Normal numer-
ator by an estimate of its variance will follow a t-distribution. However,
this is not the case because the required independence between numer-
ator and denominator does not obtain: while s and ; are independent,
s is not independent of ;.

3The notation 7/ follows that in Atkinson (1985)
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3. The r} cannot be t-distributed because, as will be seen shortly, 72 <
n — p, i.e. r; has bounded support.

3.5.2 Deletion residuals

In practice, model-checking is largely focused on two main areas of concern.
The first concern is that the model is wrong globally: the form of the re-
gression or the error terms might have been wrongly chosen. This sort of
departure will usually be seen in patterns in various plots already discussed:
for example, Figure 2(b) suggests that the residuals in the regression of OI
on age do not have constant variance.

The second concern is that the model may be broadly satisfactory but for
a few points that do not seem to fit the overall pattern - i.e there may be
some outliers in the data. Here, model-checking techniques may be useful
in identifying individual points that deserve more detailed scrutiny. What
should be done with such points depends on the context and is beyond our
current scope. Perhaps the main issues will turn on the effect of such points
on the fitted model and whether they are especially influential on estimates
of key parameters, such as treatment effects, and their associated standard
errors.

A problem, at least in principle, is that including potential outliers might
distort the fitted model in ways that make it more difficult to detect the
unusual observations. For example, an unusually large outcome, y;, might
pull the fitted line towards itself, thereby reducing the size of the residual.
A solution to one aspect of this is to assess the residual at a point using
parameters estimated after omitting the point in question: such a residual is
known as deletion residual, denoted by r;. Some authors refer to this as the
jack-knife residual, the cross-validatory residual or the (externally) studen-
tized residual, but we will stick with deletion residual.

The definition of r} starts with y; — xfﬁ(i), where B(i) is the estimate of
B based on the data with point ¢ omitted (here and in the following, a
subscript (7) refers to a statistic or other quantity obtained after omitting
the ith point). This now needs to be standardised in a way analogous to (5).
As y; and B(i) are independent, the variance of the above difference is

o® (1+ :r,’f(Xg)X(i))—la:i) ,

13



so the definition of the deletion residual is

L
i — L, P
i = bt . ®

5(2‘)\/(1 + %T(X(Ti)Xu))’lwi)

Evaluation of this for all points in a dataset looks a bit awkward, as the
deleted design matrix, the deleted parameter estimates and the deleted root
mean square error are all needed. Computing this by looping through the
data should not pose too much trouble, and these days the computational
burden of this approach would be noticeable only for very large datasets.

However, a more elegant and efficient mathematical approach is available.
The most awkward part of (6) is to evaluate (X X(;))~" and this can be
done using the so-called Woodbury Identity and a little determination. This
approach also provides dividends in terms of gaining insight into and com-
puting the value of other quantities, such as B(i).

Various forms of the of the Woodbury Identity exist and the one which suits
our present purposes best is the following, where A is a p X p matrix and
U,V are p X m matrices

(A-UVhH)'=A"+A'UT-V'AT'U)'VIAT.

The key advantage of this formula is that the matrix in parentheses on the
right hand side, which needs to be inverted, is an m x m matrix, and if m is
much smaller than p, this inversion will be easier than the inversion on the
left hand side. In our case, m = 1.

Three observations are useful at this point.

1. Note that X" X =3 x;x],

2. and X7y = > i Ty

3. From the definition of P, ! (XT X )™ 'x; = h;.
Applying the above identity with A = X7 X and U = V = x; gives
(XHXe) ' =(X"X —z;x])™

)

=(XTX)"'+ (XTX) (1 — 2l (XTX) ) el (XTX)

14



and thus

Similarly,

Bu = (XHX o) ' Xiye = (X5 Xe) (X Ty —xiy),
and substituting for (X (Ti)X @) " gives

A A (XTX)ilmiéi
Boy=B-—7F"7— (7)

and hence the ith fitted value, based on parameters estimated from the data
with the ith point omitted, is

A A h;€;
z; B mlﬁ_l—hi’
SO b )
2 TA . 2 i€i _ €
Yi Z; /B(z) € + 1_hz 1_hz

Putting all these results together shows that (6) becomes
€i
‘ S@iE)V 1-— hl '

Although this is showing progress, we need to roll up our sleeves one last
time because the above includes the root mean square from the analysis with
point ¢ omitted. In the usual analysis, the mean square error, s?, obeys
(n —p)s®> = yI' (I — P)y, which for present purposes is best written

(n—p)s*=y'y—B"X"y.
Consequently
2 T 27T T
(n —p = 1)sG) =Yu¥a — BuXoHYo
—y'y —y; — B ( X"y — ziyi)
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Substituting for B(i) gives

A A XTX _Ia:l-éi T
Biy(X Ty —ziyi) = (5 - %) (XTy — ziy:)
A~ _TA ~
AT x T AT €x; B | hiyie
=B X'y — iYi —
B Xy =B my =T,
A _TA -
AT x T . &x; B | hiyie
=B X'y —(yi — &)y —
B X y—(yi—a)y Tt
_GTXTy gy
B ¥
Substituting this in (8) gives
22
~ €;
(n—p—Dsty =y'y - BX"y — =+
22
N2 &
=(n—p)s" =~ P

—s2(n—p—17?)

(n.b. it is at this point we see that 72> < n — p). This allows the final step,
namely
. 3 €i n—p-—1 , In—p—1

€ . i
l_s(i)m_sm n—p—r? \ln—p—rf

This a much more convenient form for the deletion residual. It also shows
that for points with | r; |< 1, the deletion residual is shrunk towards zero,
whereas for | r; |> 1, they are further from zero.

(9)

3.6 Some distributional properties of residuals*

[In the following, it is assumed that the model includes an intercept]

If the fitted model is correct, we expect estimated residuals to have mean
zero and variance related to ¢? or, if we have normalised them in some

4This sub-section provides some rarely presented properties of the different types of
residual, but their practical moment is limited
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way, variance close to 1. These properties are largely true. If the ¢; are
independent and Normally distributed, we also expect the estimated residuals
to be something close to Normal. This latter expectation is largely untrue,
although deviations are not usually of practical importance.

3.6.1 Standard residuals, ¢;

The distributional properties of these have been adduced above, namely that
they have expectation zero and variances o?(1 — h;). They are not inde-
pendent, as > € = 0 (along with p — 1 other constraints, one for each
of the non-constant covariates). The residuals ¢ and j have correlation
—hij/\/(1 — h;)(1 — h;). These residuals are independent of the fitted val-

A

ues, Y.

A simple normalisation, namely scaling by s, leads to residuals ¢;/s that sum
to zero and, as s is a function solely of the residuals, are independent of y.
However, as already noted, these residuals do not have a t-distribution as
numerator and denominator are not independent.

3.6.2 Deletion residuals

Consider the deletion residual

o Yi — szB(i) _ (yi — wiT,é(i))\/ 1 — h;
i s(; :
S(i)\/(l + :B?(X(I;)X(i))fla:» ®

As B(i) is Normally distributed with expectation 3, the numerator has zero
mean and has a Normal distribution. As y; and B(i) are independent, the
numerator has variance o2. The square of the denominator has the same
distribution as 0>X?/(n—p—1), where X? has a x*-distribution on n—p—1
df. As s(; is a function of the residuals from the fit of the model with point
1 omitted, it is independent of both y; and the fitted value w?B(i), so divid-
ing numerator and denominator by o shows that r; has a #-distribution on
n—p—1df. It follows that rf has mean 0 and variance (n—p—1)/(n—p—3).

It should be noticed that the deletion residuals will not sum to zero. Nor will
they be independent of the fitted values, even if the ‘deletion fitted values’

17



:BZ»TB(Z-) are used. The ordinary residuals are independent of the fitted values
because cov(é;, ;) = 0. With deletion residuals the corresponding quantity
is:

X 1 R R
cov(r], @] Bu)) x E ( > (COV(yi, x; Bi)) — Var<sz16(i))> ;

S(i)
so, as the covariance on the right hand side vanishes, the covariance on the
left hand side is inevitably negative.

3.6.3 Standardized residuals

Discussion of these residuals has been deferred to last as their properties
are slightly more delicate than the other residuals, largely because s in the
denominator of ! is dependent on the numerator, é;.

The presence of the factor /1 — h; means that, in general, the 7, will not
sum to zero. However, 1/ is a function only of the residuals being, apart from
factors depending on n and p,

/ €
T X ——,
~2
V Zk €k

so is independent of the fitted value ;.

(10)

The dependence of numerator and denominator in 7} means that evaluation
of E(r}) requires some care. If the model is true, then € has a multivariate
Normal distribution with mean 0 and dispersion 0%(I — P). This is the same
distribution as that of —é. Consequently, from (10)

and so E(r}) = 0.

The variance of r; is found by evaluating its distribution. Starting from (9)

we have ) )
T Y

n—p n—p—1+7r?
and r; has a t-distribution with n — p — 1df. Such a distribution is that of
a random variable Z/1/X2/(n —p — 1), where Z and X? are independent
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random variables with, respectively, a standard Normal distribution and a
x>-distribution on n—p—1 df. Substituting in the above shows that r/?/(n—p)
has the same distribution as Z2/(X? + Z?%). Now recall the following:

1. Z? has a y2-distribution on 1 df;

2. a x2-distribution on v df is a Gamma distribution with shape parameter

%1/ and scale parameter 2;

3. If U and V' are independent Gamma variables with common scale pa-
rameter and shapes parameters k; and ko, then U/(U + V) has a Beta
distribution with parameters £y and k.

Consequently r/? is distributed as n—p times a Beta variable with parameters
% and %(n —p—1). Using the formula for the expectation of a Beta variable,
namely ki /(ky + k2) shows that

1

. —
1+n—p—1

E(ri?) = (n—p) x

showing that the standardized residuals do indeed have variance one.
As with the ¢;, the standardized residuals are not independent and the cor-

relation of v} and 7 is —h;;/+/(1 — h;)(1 — h)j), the same as for ¢ and ¢;:
see Cook and Weisberg (1982, p.19), quoting Ellenberg (1973).

Although a Beta distribution may sound rather different from anything to do
with a Normal distribution, things are not that different. If 7} is normal with
mean 0 and variance 1, then r/> would be expected to follow a y?-distribution,
which has mean 1 and variance 2. Using the scaled Beta distribution, the
mean and variance would be 1 and 2(n —p—1)/(n — p+2), respectively, and
in most applications n —p will be large compared with 2. A plot of the scaled
Beta density and a x? density is shown in Figure 4, for n = 11, p = 2, showing
that the two densities are very similar. Only in practically unimportant cases
in which the Beta parameters are similar, i.e. n — p is small, will the two
densities diverge noticeably.
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Density

Standardized residual (n=11,p=2)

Figure 4: Approximate and exact densities for r?: red is the x? density and black
is the n — p scaled Beta density with parameters % and %(n —p—1), withn =11
and p = 2 [shown over range 0 to 5].

4 Does the type of residual matter and what
to do anyway

4.1 Does it matter?

In comparing the different types of residuals, the first thing to deal with is
that the ‘usual’ residual, ¢; is on the scale of the observations and cannot be
compared directly with the standardized and deletion residuals, which are di-
mensionless. As such, when comparing the types of residuals, it is necessary
to replace the usual residuals by what will be referred to as scaled residuals,
namely €;/s.

Once this has been done, it might be argued that the relationship between
the residuals is already apparent from the mathematics. For example, the
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presence of v/1 — h; in the definition of standardized residuals mean they
are always further from 0 than the scaled residuals, while (9) also provides
pertinent information.

However, the formulae alone do not give the sense of the practical differences
between the types that can be found from illustrations based on real data.
The following plots compare type of residuals using the data displayed in
Figures 1 and 2. While this exercise only uses two datasets, there does not
seem any reason to think that there is anything untypical about these data.

Perhaps the most striking feature of Figure 5 is that the differences between
the different types of residual are very minor. The extreme points are slightly
more extreme for deletion residuals, as shown in the largest positive residual
in Figure 5(a) and the larger positive residuals at the top right of Figure 5(c).
The larger deletion residuals probably reflect the influence these points had
on the fitted lines. Figure 5(b) shows that the standardized and scaled resid-
uals are very similar indeed.

For the Graves’ data, Figure 5(d) compares the deletion and standardized
residuals. For the largest residuals, the deletion residuals are more extreme
than the standardized residuals, closely mirroring the comparison in Fig-
ure 5(c). Careful inspection shows that deletion residuals are always more
extreme outside the interval [-1,1] on the vertical axis. Within this interval
(9) indicates that the standardized residuals are more extreme. Very careful
inspection shows that this is the case, although, in the parts of the interval
close to 0, the effect is not really visible because, also following (9), a stan-
dardized residual vanishes if, and only if the same is true of the corresponding
deletion residual.

In these examples, and probably more widely, the perceived and theoretical
shortcomings of the ¢;, or scaled residuals, do not seem to be important.
Nevertheless, as the different forms of residual are now widely available, any
analyst will have to choose one form or other when assessing model fit. In
R, if the regression is stored in mod, then scaled residuals can be found
as resid(mod) /sigma(mod), standardized residuals as rstandard(mod) and
deletion residuals as rstudent (mod), so all types of residual are equally read-
ily available. My own practice tends to prefer deletion residuals if there is
concern about outliers, whereas the distributional properties of other forms,
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Figure 5: Residuals for onset times (O’Sullivan et al., 1998) and ophthalmic index
(OI)(Perros et al., 1993). Black circles are scaled residuals, blue crosses are stan-
dardized residuals and red crosses denote deletion residuals.

such as independence of residuals and fitted values, make them more suitable
for assessment of global departures in model fit.
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4.2 What to do next

What has been conspicuous by its absence from this article is any discussion
about how model inadequacy revealed by the techniques considered here can
be remedied. This will largely continue to be the case. There are techniques,
such as added variable plots (Atkinson, 1985, p.67), which try to guide the
process of model amendment, but most changes will come from a more fun-
damental rethinking of the form of the model, based on the context of the
application and the nature of the problem revealed.

A good example of this comes from the problem with the OI data seen in
Figure 2(b). Here the variance of the residuals seems to increase with the
age of the patient, as does the size the Ol itself (Figure 2(a)). On the basis
of this it seems plausible that the variance of the OI acts not additively, but
proportionally - the variance may be a constant percentage of the OI. If this
is the case, then modelling not OI but log(OI) may be preferable.
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Figure 6: Data on log(OI) versus age in 101 patients with Graves’ ophthalmopathy
(Perros et al., 1993)

Figure 6 presents the same plots as in Figure 2 but now applied to the log of
the OI. The increasing spread of the residuals with increasing age is no longer
present. This seems to offer an improved fit. Plots of the usual residuals,
¢; against the fitted values for both OI and log(OI) are shown in Figure 7.
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Again, there is no suggestion of a change in the variance of the ¢; with fitted
values in Figure 7(b), whereas there is a clear pattern in Figure 7(a), with a
clear indication that in this model a constant o is not appropriate.

In general, using routine model-checking to identify shortcomings in a fitted
model is sensible. However, if a questionable fit is revealed then context-
dependent methods for model amendment, rather than an algorithmic ap-
proach, is probably to be preferred. It ought to lead to a final model that is
better understood and meaningful.

1.0

0.5

0.0

Residuals
Residuals

-0.5
1

Fitted values Fitted values
(a) Residuals vs fitted, OI (b) Residuals vs fitted, log(OI)

Figure 7: Plots of the usual residuals versus fitted values for the Graves’ ophthal-
mopathy data, untransformed OI and log-transformed OI

5 Things not in this document

Books have been written on this material and even just touching on the things
not covered above would greatly lengthen what is already a long document.
However, two topics should be mentioned.
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5.1 Cook’s statistic

The purpose of Cook’s statistic is to gauge the effect of each observation on
the estimated parameters. It is defined as
D — (Bw —B)"X"X(Bw—B) _ G0 —9"@0 -9 _
! ps? ps? p(L—hi)’

where (7) has been used to obtain the final form. The presence of X in the
definition is to put all the changes on a common scale, namely that of the
outcome, and division by s? leads to a dimensionless quantity, which might
be thought to make interpretation easier.

Cook’s statistic can readily be found in most statistical packages, and is
doubtless of use in some applications, but it is probably less often useful
than might be thought.

1. Assessing the effect of deletion of cases on all parameters at the same
time is, in many applications, probably less pertinent than assessing
the effect on certain subsets of the parameters. While an appropriate
amendment of the definition would clearly be possible, some of the
convenience would be lost because it would need special calculation in
most packages.

2. Indeed, the number of parameters of interest may be quite small. In
many medical applications, attention would often be focused on one
or two treatment or effect parameters. In these cases, they would be
assessed best on the scale of the outcome, not in the dimensionless form
in D;.

3. While investigating the effect of a few questionable on key parameters
is often a very important exercise, making the assessment by deleting
all observations in turn is not usually appropriate and, indeed, could
be rather unhelpful.

5.2 Assessing Normality of the residuals

There has been no mention of the assessment of the Normality of the resid-
uals in this article. It should be remembered that from the Gauss-Markov
theorem, homoscedasticity is all that is needed for optimal estimation of
the B in the sense of minimising the error of estimation. Nevertheless, in a
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model-based approach, validity of hypothesis tests and confidence intervals
does rest on the Normality assumption, so some attention should be paid
to this aspect. Moreover, some methods of checking Normality can be very
good at detecting outliers.

While simple methods, such as plotting histograms of residuals, are useful,
the Normal probability plot is probably the tool of choice. A thorough dis-
cussion of these plots raises quite a few issues and will be the subject of a
separate article.
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