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Some data

Consider the data on Vitamin C intake (mg) from school lunches
[from Reception, Years 1 & 2]
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School lunch Vitamin C content 2009
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Left hand from 2003 and right hand from 2009
(from Spence et al. 2013)
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Comments

Year n Mean SD Min Q1 Median Q3 Max

2003 233 14.5 8.6 0.1 8.5 12.5 17.4 52.4
2009 323 60.0 38.4 5.8 26.2 59.1 77.8 184.7

Table: Summary statistics for the vitamin C intakes (mg)

• Aim is to compare intakes between 2003 and 2009

• Thoughts of using a t-test fade as data look skewed

• Also means are less than two SDs, so again unlikley to be
Normal as Vitamin C is non-negative

• SDs very different
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So what does the non-statistician do?

Tendency is to reach for non-parametric aka distribution-free aka
rank-based methods. Is this OK?

1 Tests hypothesis F1(·) = F2(·). I.e. samples are from same
distribution - like a t-test only if equal variances assumed

2 Based on ranks - is this OK?

3 Estimation preferred over testing - now focuses on medians not
means. Medians recommended as they have a high breakdown point
of 50%. Is this a good thing?

4 Usually no SEs with medians - OK as confidence intervals are
available. However, usually based on assumption
F2(x) = F1(x− θ). So equal dispersion assumed - method not
assumption free (or even non-parametric)

5 Distribution-free methods, at least the common ones, usually not
rich enough for most purposes
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Need we bother?

• Could just ignore skewness

• For samples of reasonable size, and inference based on
median, distribution anxiety might be assuaged by Central
Limit Theorem

• Might be being a bit cavalier with differences in SDs
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So what does the statistician do?

• Of course, most statisticians would analyse the logs of the
Vitamin C values. Why?

• Well, often explained in terms of distributional shape - log of
Vit C will be closer to Normal.

• Yes, OK, but

• arguably because of inadequacy of approaches that are
essentially additive when applied to positive, skewed data.
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Are additive effects OK?

Difference in mean (or median for that matter) of Vit C between surveys

is about 50 mg. Adding 50 to mean of 2003 data gives following:
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Red plot looks nothing
like 2009 data:
wrong shape;

wrong spread.
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What about multiplication?

• Mean in 2009 about four times that in 2003

• Suppose xi, i = 1, . . . , 233 are the 2003 Vit C values

• Suppose fi are 233 independent realisations of a gamma
variate with mean 4 and variance 1.

• Form xifi, i = 1, . . . , 233 and plot these
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Multiplicative effects

 2003 data multiplied by random factor with mean 4
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School lunch Vitamin C content 2009
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Scaled by fi 2009 data
So multiplying 2003 data by a four-fold factor looks more convincing -

and logs can mediate between additive and multiplicative effects
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Transformations

General approach is:

1 Select transformation g such that the g(xi), i = 1, . . . , n are Normal

2 Analyse the g(xi)

3 Present results on original scale, with appropriate use of g−1(·)

Often point 1 receives most attention cf. Box & Cox (1964)

But unless point 3 is done convincingly and understandably, whole
exercise is less compelling
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Taking logs

Suppose Vit C values in 2003 are the xs and in 2009 the ys, then
we calculate

m3 =
1

n3

n3∑
i=1

log xi : m9 =
1

n9

n9∑
i=1

log yi

• These means will not look like Vit C values

• So we report exp(m3) and exp(m9) as plausible and
comprehensible measures of location
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What about the difference between 2003 & 2009?

• Difference between Normal variables are appropriate, so
m9 −m3 is a suitable measure of difference

• But it is on the log scale - does evaluating exp(m9 −m3)
make sense?

• Yes it does

exp(m9 −m3) =
exp(m9)

exp(m3)

• So discrepancy between 2003 & 2009 is now in terms of a
ratio of the individual year means

• This is the Heineken property - only logs can do this
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Other transformations

• If we had, e.g., used g(x) =
√
x, with m9,m3 ( appropriately

redefined) now Normal on the square root scale, then
m9 −m3 would still be a suitable measure of difference

• But (m9 −m3)
2 is no longer just a function of m2

9 and m2
3

• So no simple form for the discrepancy on original scale, based
on some measure of discrepancy between m2

3,m
2
9, arises

naturally.

• While g(·) ̸= log(·) may give more Normal data, this lack of a
compelling way to back-transform makes non-log
transformation much less attractive.
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Geometric means

Now returning to the log transformation

• We can readily contrast 2003 and 2009 using the
exp(m3), exp(m3) but what are they? Are they means?

• They are, but not arithmetic means. They are geometric
means, defined as, e.g.,

exp(m3) = exp

(
1

n3

n3∑
i=1

log xi

)
= n3

√√√√( n3∏
i=1

xi

)
,
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Properties of geometric means (GMs)

• GMs defined for positive values only

• If A,G are the arithmetic and geometric means, respectively,
of some data then G ≤ A, with equality only if all values are
equal.

• With positively skewed data, median is less than arithmetic
mean, and often closer to geometric mean

• Large values perturb GM less than the AM - useful alternative
to median

• GM can be sensitive to changes in small values.
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Some theoretical considerations

Although logs work well with many skewed distributions, most
insight comes from assuming Y is log-Normal - i.e. Y = exp(X)
where X is Normal with mean µ and variance σ2.

Worth recalling that the moment generating function of a Normal
is:

M(t) = E[exp(tX)] = exp(µt+ 1
2 t

2σ2)
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Theoretical comments on log-Normal

1 E[Y ] = M(1) = exp(µ+ 1
2σ

2), so AM larger than exp(µ)

2 As exp is monotone increasing,
1
2 = Pr(X < µ) = Pr(Y < eµ), so eµ is the median of Y

3 The variance of Y is

M(2)−M(1)2 = exp(2µ+ σ2)(exp(σ2)− 1)

so SD of Y is proportional to its mean. The CV of Y , i.e. SD
divided by mean is

√
exp(σ2)− 1 and for small σ this is ≈ σ.
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Yet more theoretical comments

• For a (positive) random variable Y its geometric mean is
defined as

exp(E[log(Y )])

• For log-Normal Y this is eµ, which coincides with the median

• Regardless of the distribution of Y , the GM of Y is less than
E[Y ], i.e. its AM, so the AM-GM inequality holds for random
variables. To see this, apply Jensen’s inequality and note that
log is concave.
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Practical arithmetic
This is very truncated - for details see Section 4 of the associated document.

Summary of data

Year n Mean SD Mean (logs) SD (logs) Geometric mean
2003 233 14.5 8.6 2.491 0.680 12.1
2009 323 60.0 38.4 3.853 0.752 47.2

Main comparison is 3.853-2.491=1.362. But this is on the log-scale, so
antilog

exp(3.853− 2.491) = exp(1.362) = 3.90 =
exp(3.853)

exp(2.491)
,

So difference is described on original scale by a ratio - and of GMs not

AMs - i.e. GM in 2009 is about four times that in 2003
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Unlogging the CI

Apply standard methods to logged value to get 95% CI for difference in
means on log scale

60.0− 14.5± 1.96× 0.723

√(
1

233
+

1

323

)
= (1.241, 1.485)

So, point estimate 1.362 is anti-logged to get 3.90 and interval
estimate (1.241,1.485) is anti-logged to get interval estimate for
3.90, namely 3.46 to 4.41.
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Should I anti-log the estimated SE?

No
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Hypothesis test

• Hypothesis of equality of AMs on logged scale is µ1 = µ2

• This is the same as testing exp(µ1) = exp(µ2), i.e. testing
equality of GMs on original scale

• So P-value to be reported is unaffected by the transformation
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Back to SE

• Why shouldn’t you anti-log the SE?

• Presumably would want to get a measure of uncertainty

• Not needed as you have an interval estimate

• Also, exp(s) does not provide a measure of uncertainty, at
least not analogous to an SE.

• For log-Normal, the sampling distribution of the sample GM is
log-Normal, with expectation and SD, respectively

exp(µ+ 1
2nσ

2) exp(µ+ 1
2nσ

2)
√

exp(σ2/n)− 1

• Sampling variation depends on µ, but s is not dependent on
µ, so exp(s) cannot provide the relevant information
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Miscellaneous comments

Several issues are mentioned in the accompanying article, two of
which are mentioned without expansion here.

• For most purposes, with a skew distribution, the GM is a
highly suitable summary for location.

• For cost data, which are often skew, it is the AM that is
pertinent. If the mean cost per patient is m, then the cost of
treating N patients is Nm only if m is the AM not the GM.

• Zeroes in the data. Faced with skewed data that one would
like to log, zeroes are a real pain. Sensible ways round this
depend on the context and the provenance of the zeroes.
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