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Some data

Consider the data on Vitamin C intake (mg) from school lunches
[from Reception, Years 1 & 2]

School lunch Vitamin C content 2003 School lunch Vitamin C content 2009
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Left hand from 2003 and right hand from 2009
(from Spence et al. 2013)
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Comments

Year ‘ n Mean SD Min Q1 Median Q3 Max
2003 | 233 145 86 0.1 85 12.5 174 524
2009 | 323 60.0 384 58 26.2 59.1 77.8 1847

Table: Summary statistics for the vitamin C intakes (mg)

® Aim is to compare intakes between 2003 and 2009

Thoughts of using a t-test fade as data look skewed

Also means are less than two SDs, so again unlikley to be
Normal as Vitamin C is non-negative

SDs very different
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So what does the non-statistician do?

Tendency is to reach for non-parametric aka distribution-free aka
rank-based methods. Is this OK?

@ Tests hypothesis Fi(-) = F»(+). l.e. samples are from same
distribution - like a t-test only if equal variances assumed

@ Based on ranks - is this OK?

© Estimation preferred over testing - now focuses on medians not
means. Medians recommended as they have a high breakdown point
of 50%. Is this a good thing?

@ Usually no SEs with medians - OK as confidence intervals are
available. However, usually based on assumption
Fy(z) = Fi(x — 0). So equal dispersion assumed - method not
assumption free (or even non-parametric)

@ Distribution-free methods, at least the common ones, usually not
rich enough for most purposes
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Need we bother?

e Could just ignore skewness

® For samples of reasonable size, and inference based on
median, distribution anxiety might be assuaged by Central
Limit Theorem

® Might be being a bit cavalier with differences in SDs
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So what does the statistician do?

® Of course, most statisticians would analyse the logs of the
Vitamin C values. Why?

® Well, often explained in terms of distributional shape - log of
Vit C will be closer to Normal.

® Yes, OK, but

® arguably because of inadequacy of approaches that are
essentially additive when applied to positive, skewed data.
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Are additive effects OK?

Difference in mean (or median for that matter) of Vit C between surveys
is about 50 mg. Adding 50 to mean of 2003 data gives following:

. o N Red plot looks nothing
: : like 2009 data:
g 8 wrong shape;
s wrong spread.
lindhe.
0 50 100 150 200

Vitamin C (mg)

J N S Matthews Taking logs - why and how?



Background
00000000

What about multiplication?

® Mean in 2009 about four times that in 2003
® Suppose z;,7 = 1,...,233 are the 2003 Vit C values

Suppose f; are 233 independent realisations of a gamma
variate with mean 4 and variance 1.

Form z;f;,©=1,...,233 and plot these
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Multiplicative effects

2003 data multiplied by random factor with mean 4 School lunch Vitamin C content 2009
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So multiplying 2003 data by a four-fold factor looks more convincing -
and logs can mediate between additive and multiplicative effects
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Transformations

General approach is:
@ Select transformation g such that the g(z;),i = 1,...,n are Normal
@ Analyse the g(z;)

© Present results on original scale, with appropriate use of g=!()

Often point 1 receives most attention cf. Box & Cox (1964)

But unless point 3 is done convincingly and understandably, whole
exercise is less compelling
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Taking logs

Suppose Vit C values in 2003 are the xs and in 2009 the ys, then
we calculate

1 & 1 &
mg = — log z; : mg = — log

® These means will not look like Vit C values

® So we report exp(ms) and exp(myg) as plausible and
comprehensible measures of location
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What about the difference between 2003 & 20097

e Difference between Normal variables are appropriate, so
mg — ms is a suitable measure of difference

® But it is on the log scale - does evaluating exp(mg — ms)
make sense?

® Yes it does (1m0)
exp(mg

PO =) = epoms)

® So discrepancy between 2003 & 2009 is now in terms of a
ratio of the individual year means

® This is the Heineken property - only logs can do this
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Other transformations

e If we had, e.g., used g(z) = /x, with mg, ms ( appropriately
redefined) now Normal on the square root scale, then
mg — mg would still be a suitable measure of difference

® But (mg — m3)? is no longer just a function of m3 and m3
® So no simple form for the discrepancy on original scale, based

on some measure of discrepancy between m3, m3, arises
naturally.

® While g(-) # log(-) may give more Normal data, this lack of a
compelling way to back-transform makes non-log
transformation much less attractive.
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Geometric means

Now returning to the log transformation

® We can readily contrast 2003 and 2009 using the
exp(ms),exp(mg) but what are they? Are they means?

® They are, but not arithmetic means. They are geometric
means, defined as, e.g.,

1 &
exp(ms) = exp ("13 Zlog:m) ="
i=1
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Properties of geometric means (GMs)

® GMs defined for positive values only

e If A, G are the arithmetic and geometric means, respectively,
of some data then G < A, with equality only if all values are
equal.

e With positively skewed data, median is less than arithmetic
mean, and often closer to geometric mean

® Large values perturb GM less than the AM - useful alternative
to median

® GM can be sensitive to changes in small values.
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Some theoretical considerations

Although logs work well with many skewed distributions, most
insight comes from assuming Y is log-Normal - i.e. Y = exp(X)
where X is Normal with mean y and variance o

Worth recalling that the moment generating function of a Normal
is:

M(t) = E[exp(tX)] = exp(ut + 1t?0?)
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Theoretical comments on log-Normal

@ E[Y] = M(1) = exp(p + 302), so AM larger than exp(y)

® As exp is monotone increasing,
$ =Pr(X < p) =Pr(Y < e#), so e is the median of ¥’

©® The variance of Y is
M(2) = M(1)% = exp(2u + 0%)(exp(0?) — 1)

so SD of Y is proportional to its mean. The CV of Y, i.e. SD
divided by mean is y/exp(c?) — 1 and for small o this is =~ o.
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Yet more theoretical comments

® For a (positive) random variable Y its geometric mean is
defined as

exp(E[log(Y)])

® For log-Normal Y this is e#, which coincides with the median

® Regardless of the distribution of Y, the GM of Y is less than
E[Y], i.e. its AM, so the AM-GM inequality holds for random
variables. To see this, apply Jensen’s inequality and note that
log is concave.
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Practical arithmetic
This is very truncated - for details see Section 4 of the associated document.

Summary of data

Year | n Mean SD  Mean (logs) SD (logs) Geometric mean
2003 | 233 145 8.6 2.491 0.680 121
2009 | 323 60.0 38.4 3.853 0.752 47.2

Main comparison is 3.853-2.491=1.362. But this is on the log-scale, so
antilog

exp(3.853)

. —2.491) = 1.362) =3.90 = ————
exp(3.853 91) = exp(1.362) = 3.90 exp(2.491)’

So difference is described on original scale by a ratio - and of GMs not
AMs - i.e. GM in 2009 is about four times that in 2003
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Some arithmetical issues
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Unlogging the CI

Apply standard methods to logged value to get 95% CI for difference in
means on log scale

11
0—145+1. 723 (= + — ) = (1.241,14
60.0 — 14.5 + 1.96 x 0.723 (233+323) (1.241,1.485)

So, point estimate 1.362 is anti-logged to get 3.90 and interval
estimate (1.241,1.485) is anti-logged to get interval estimate for
3.90, namely 3.46 to 4.41.
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Should | anti-log the estimated SE?

No
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Hypothesis test

® Hypothesis of equality of AMs on logged scale is p11 = po

® This is the same as testing exp(u1) = exp(u2), i.e. testing
equality of GMs on original scale

® So P-value to be reported is unaffected by the transformation
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Back to SE

® Why shouldn’t you anti-log the SE?
® Presumably would want to get a measure of uncertainty
® Not needed as you have an interval estimate

e Also, exp(s) does not provide a measure of uncertainty, at
least not analogous to an SE.

® For log-Normal, the sampling distribution of the sample GM is
log-Normal, with expectation and SD, respectively

exp(p+ 570%)  exp(pu+ 3:0°)V/exp(o?/n) — 1

® Sampling variation depends on p, but s is not dependent on
i, so exp(s) cannot provide the relevant information
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Miscellaneous comments

Several issues are mentioned in the accompanying article, two of
which are mentioned without expansion here.
® For most purposes, with a skew distribution, the GM is a
highly suitable summary for location.
® For cost data, which are often skew, it is the AM that is
pertinent. If the mean cost per patient is m, then the cost of
treating N patients is Nm only if m is the AM not the GM.
® Zeroes in the data. Faced with skewed data that one would
like to log, zeroes are a real pain. Sensible ways round this
depend on the context and the provenance of the zeroes.
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