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1 Some useful revision

In this article use will be made of the properties of Beta variables and a few
other results. For convenience, a reminder of the key features are given here.

1.1 The Beta distribution

A Beta random variable is a random variable that is in the interval (0,1) and
is defined by means of two positive parameters, α and β, and denoted by
Beta(α, β). It has density

f(x | α, β) = xα−1(1− x)β−1

B(α, β)
0 < x < 1

where B(α, β) = Γ(α)Γ(β)/Γ(α + β) is the Beta function. The mean of the
distribution is α/(α + β) and its variance is αβ/[(α + β)2(α + β + 1)].

1.2 Sample mean and variance

For a sample of independent, identically distributed Normal random vari-
ables, the sample mean, m and sample variance, s2 are independent.
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1.3 Distribution of F (X)

Suppose X is a random variable with distribution function F (x), then U =
F (X) is a uniform random variable on [0,1]. To see this note that F (·)
is strictly increasing and then Pr(U ≤ u) = Pr(F (X) ≤ u) = Pr(X ≤
F−1(u)) = F (F−1(u)) = u.

1.4 Multinomial distribution

Suppose n items are classified as being in one of k categories, with the num-
ber in category j being the random variable Rj. If each item is classified
independently of the other items and the probability of being in category j
is πj (with π1 + . . . + πk = 1), then the (R1, . . . , Rk) follow the Multinomial
distribution, with

Pr(R1 = r1, . . . , Rk = rk) =
n!

r1!r2! . . . rk!
πr1
1 πr2

2 . . . πrk
k

where r1+ . . .+rk = n. Note that k = 2 is the familiar Binomial distribution.

1.5 Covariances

This is trivial but perhaps worth a reminder so that some of the following
derivations can be done more smoothly. The covariance of random variables
X, Y is cov[X, Y ] = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ]. Conse-
quently, if either E[X] or E[Y ] vanishes, then cov[X, Y ] = E[XY ].

1.6 Basu’s Theorem

Suppose data are observed from a model f(· | θ) and that i) T is complete
and sufficient statistic for θ and ii) V is a statistic which has a distribution
which does not depend on θ, then T and V are independent.

2 Normal probability plots

2.1 Rationale and method

An obvious way to assess the Normality of a sample is to draw a histogram
and judge whether the shape looks reasonably close to the bell-shaped curve
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you would expect. What this is essentially doing is to see how many observa-
tions are in the lower and upper tails and how many are close to the central
part of the sample. Put this way it is unsurprising that a better, but still
essentially subjective, alternative is based on putting the sample into order.

To start with, suppose we have a sample of n independent observations from a
standard Normal distribution, i.e aN(0, 1) distribution, namely Z1, Z2, . . . , Zn.
Reorder these values to obtain Z(1) < Z(2) < . . . < Z(n)

1, where parentheses
on the subscripts indicate that these are the ordered sample values, some-
times called the order statistics, with Z(1) being the smallest of the Zi, Z(2)

the second smallest, and so on. In Figure 1, the ordered values for samples
of sizes 5, 10, 25, 50, 75 and 100 are shown as black circles. In a random
sample, there will be considerable variation in the locations of individual
points. What we can compute are the expected order statistics, E[Z(i)], which
are shown as red crosses in Figure 1. How these expectations are evaluated
will be considered in Section 3.
From Figure 1 we see that the expected order statistics have the following
properties:

1. they are symmetrically distributed about the centre of the sample;

2. there are some observations in the tails, but the bulk are concentrated in
the centre, with the density being maximal near the mean and reducing
towards the tails;

3. their range increases with sample size.

The random samples behave in a broadly similar way, albeit with inevitable
random variation. The idea of a Normal Probability Plot (NPP) is to plot the
ordered sample values against the expected order statistics from a standard
Normal variable. If the data are from a standard Normal distribution, it
would be expected that the plot would be a straight line, but for random
deviations. This is shown in Figure 2(a) for the sample of size 50 in Figure
1.
If the data, Y1, Y2, . . . , Yn are a random sample from a Normal distribution
with mean µ and variance σ2, then we can write Yi = µ+ σZi, where the Zi

are standard Normal. As σ > 0, it follows that Y(i) = µ+ σZ(i), so a plot of

1In this article attention is restricted to continuous distributions, so it is immaterial
whether we use < or ≤, as the two differ only by events with probability 0
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Figure 1: Plots of samples from the standard Normal distribution of sizes 5, 10,
25, 50, 75 and 100, black circles from bottom to top. Values of the expected order
statistics for samples of the same size are the red crosses below each sample

the ordered data against the expected order statistics of a standard Normal
distribution will still approximate a straight line, but now with intercept µ
and slope σ. This is illustrated in Figure 2(b), where the 50 data points
are from a Normal distribution with mean 10 and standard deviation 3. A
simple regression, as performed in R using lm(), gives an intercept of 10.74
and slope of 2.87, broadly in line with the parameter values of 10 and 3,
respectively.

2.2 Effectiveness of Normal plots

While NPPs provide a line that should be straight if the data are Normal,
there will inevitably be departures from strict linearity. It therefore becomes
a matter of judgment whether a NPP provides evidence that data can rea-
sonably be assumed to be Normal. In this respect it is helpful to consider
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(a) Sample size 50
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(b) Sample from N(10, 9) with n = 50

Figure 2: Plots of ordered observations against expected order statistics from
standard Normal variable. Plot 2(a) is for sample of size 50 from Figure 1. Plot
2(b) is a new sample from N(10, 9): red line is simple regression fit.

how far from linear is the NPP for data known to be Normal and for data
known to be non-Normal.

Of course, data can be non-Normal in many ways and it is useful to draw
some distinctions. A Normal random variable, X, has zero skewness, as
E[(X − µ)3]/σ3 = 0, and kurtosis 3, as E[(X − µ)4]/σ4 = 3.

2.3 Distinguishing Normal samples from skewed sam-
ples

Take as an example of a skewed random variable, Y , an exponential random
variable with mean 1

2
, which has standard deviation of 1

2
. Figure 3 shows

histograms and NPPs for a random sample of size 50 from the exponential
distribution and, for comparison, a sample of size 50 from a Normal distri-
bution with the same mean and standard deviation.

The histograms use the default number of bins from the R command hist().
It might be argued that the number of bins might profitably have been larger
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in Figure 3(b), although this also illustrates that no such choice is required
when using NPPs.

Some care is needed in interpreting the NPPs in Figures 3(c) and 3(d). For
skewed data, as shown by the exponential variable, there are a large number
of observations near zero - these do not spread out as much as they would
from the lower tail of a symmetric distribution, which leads to the relatively
flat part of the NPP for the smaller abscissae. At the larger abscissae the
ordinates increase rapidly. In Figure 3(d) the slope of the plot is fairly con-
stant. However, it must be conceded that the immediate visual impression of
Figures 3(c) and 3(d) is, perhaps, less striking than between the histograms.
However, careful inspection of Figure 3(c) shows the clear curvature in the
plot. This is seen very clearly in Figure 3(e), where simple fitted regression
lines help guide the eye, and help to contrast the two NPPs more clearly.
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(c) NPP exponential variable

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

(d) NPP Normal variable
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Figure 3: Histograms and NPPs for exponential and Normal variables, each with
mean and SD equal to 1

2 . Figure 3(e) shows both on same axes, with simple fitted
lines, with red for Normal and black for exponential.



2.4 Identifying non-Normal samples on the basis of
kurtosis

While symmetry is clearly a necessary condition for a distribution to be
Normal, there are symmetric distributions that are not Normal. In these
cases perhaps the principal departure is through the heaviness of the tails,
and this can be quantified by the kurtosis of the distribution. The kurtosis
of a random variable, X, is defined as

κ =
E[(X − µ)4]

σ4
,

where µ, σ2 are, respectively, the mean and variance of X. Note that κ is
dimensionless and for a Normal distribution κ = 3. This leads to the defini-
tion of excess kurtosis as κ− 3. Distributions with κ < 3 are platykurtic and
have lighter tails than the Normal, whereas heavier-tailed distributions are
leptokurtic and have κ > 3.

An example of a leptokurtic distribution is the t-distribution on ν degrees of
freedom. For large ν, tν is very similar to the Normal distribution, so the
most notable differences are shown by taking ν to be small. However, in the
above it has been assumed that all necessary moments, i.e. up to the fourth,
exist but for the t-distribution this is not true for ν ≤ 4. For ν > 4 the excess
kurtosis is 6/(ν − 4), so we use as an example ν = 5, the smallest integer
degrees of freedom for which the kurtosis exists, and where it is equal to 9
(excess kurtosis 6).

As might be imagined, it is hard to distinguish non-Normality on the basis
of kurtosis alone. Because the differences arise in the tails, this will be es-
pecially true for small samples. In Figure 4(e) it is hard to distinguish the
Normal from the t-sample. In Figure 4(c), the tails do seem to have larger
values than might be expected for a Normal distribution, but the differences
are more subtle than in Figure 3.

Of course, it may well be that the untoward effects on the analysis of non-
zero excess kurtosis may be less marked than those of non-zero skewness, so
detection of non-Normal kurtosis may be less important.
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(c) NPP t5 variable
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(d) NPP Normal variable
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Figure 4: Histograms and NPPs for t5 and Normal variables, each with mean 0
and variance 5/3. Figure 4(e) shows both on same axes, with simple fitted lines,
with red for Normal and black for t5.



3 Order statistics

A NPP plots the ordered data against the expected order statistics from a
sample of the same size, drawn from a standard Normal distribution. How
are these expected order statistics calculated? In this section we will con-
sider this problem and we will start by deriving the distribution of the order
statistics for a general univariate distribution. The next step, computing the
expectations, is straightforward for a uniform distribution and explicit re-
sults are available for the exponential distribution. However, for the Normal
distribution, explicit expectations are unavailable (except for a few special
and unimportant results when the sample size is very small), so expectations
have to be derived numerically, or through approximations. We restrict con-
sideration to continuous random variables.

3.1 Distribution of order statistics for a general con-
tinuous distribution.

Suppose X1, . . . , Xn is a sample of independent random variables, each with
density f(x) and distribution function F (x). The distribution of elements
of the ordered sample, X(1), . . . , X(n) will differ, e.g. the distribution of X(1)

is not the same as that of X1 - it is intuitively obvious that E(X(1)) will be
less than E(X1) (unless, of course, n = 1). There are two slightly different
ways to derive the distribution of X(r), for r = 1, . . . , n. One calculates the
density, fr(x) directly, whereas the other approach, adopted here, first finds
the distribution function, Fr(x), and derives the density by differentiation.
The latter is conceptually slightly simpler, albeit finishing with a longer, al-
though routine computation.

We have Fr(x) = Pr(X(r) < x), and the event X(r) ≤ x will occur if at
least r of X1, . . . , Xn are less then x, and of course the chance any element
of the unordered sample is less than or equal to x is F (x). Consequently
Pr(X(r) < x) is the probability of at least r successes in n binomial trials,
where the probability of success is F (x). Hence

Fr(x) =
n∑

j=r

aj (1)
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where

aj =

(
n
j

)
F (x)j[1− F (x)]n−j, j = 1, . . . , n.

To obtain the density of X(r), fr(x), (1) must be differentiated with respect
to x. For r ≤ j ≤ n

daj
dx

= j

(
n
j

)
F (x)j−1[1− F (x)]n−jf(x)− (n− j)

(
n
j

)
F (x)j[1− F (x)]n−j−1f(x)

= bj − cj, say.

Using the observation that

(j + 1)

(
n

j + 1

)
=

n!

j!(n− j − 1)!
= (n− j)

(
n
j

)
,

it follows that bj+1 = cj, so consequently the sum of the bj − cj telescopes
and hence

fr(x) = br − cn = r

(
n
r

)
F (x)r−1[1− F (x)]n−rf(x). (2)

The multiplier has an alternative form because

n

(
n− 1
r − 1

)
= r

(
n
r

)
.

The alternative derivation leads to this other multiplier. Briefly, the argu-
ment is that the probability X(r) is in (x, x+ dx) is found by assuming X1 is
in (x, x + dx) and that r − 1 of the remaining n − 1 variables are less than
x. This needs to be multiplied by n because any of the Xj could be the one
in (x, x+ dx).

3.2 Order statistics for uniform and Normal distribu-
tions

3.2.1 Uniform distribution

If the Xj are uniformly distributed on [0, 1], then F (x) = x and f(x) =
1. Consequently, the rth order statistic from a sample of n independent

11



Uniform[0,1] variables has density

n

(
n− 1
r − 1

)
xr−1(1− x)n−r,

i.e. it has a Beta(r, n − r + 1) distribution, which has mean r/(n + 1) and
variance r(n− r + 1)/[(n+ 1)2(n+ 2)].

3.2.2 Normal distribution

For the Normal distribution, substituting F = Φ and f = ϕ in (2) does
not yield a distribution that is tractable, at least in the sense of explicit
expressions for the means and variances of the order statistics. It is always
possible to compute E[X(r)] by numerical evaluation of

∫
xfr(x)dx, as in

Royston (1982b), which is implemented in the function evNormOrdStats in
the R library EnvStats: see also the amendment in Königer (1983).

However, this is computationally demanding, especially for larger n and a
good and easily computed approximation would be useful. This can be ob-
tained applying the result in 1.3. Suppose Z1, . . . , Zn are independent val-
ues from a standard Normal distribution, then Φ(Z1), . . . ,Φ(Zn) is a sample
from a Uniform distribution on [0,1]. As Φ is increasing, Φ(Z(r)) is the rth
order statistic from the sample Φ(Z1), . . . ,Φ(Zn), so E[Φ(Z(r))] = E[U(r)] =
r/(n+ 1).

As a first attempt at an approximation, we take E[Φ(Z(r))] ≈ Φ(E[Z(r)]), and
hence

E[Z(r)] ≈ Φ−1(r/(n+ 1)). (3)

Interchanging E[·] and Φ(·) is entirely bogus but works quite well. Blom
(1958) explored a range of other approximations, including the family of
approximations

E[Z(r)] ≈ Φ−1

(
r − α

n− 2α + 1

)
,

for 0 ≤ α ≤ 1. Blom found the best approximation was to use α = 3
8
, i.e.

E[Z(r)] ≈ Φ−1

(
r − 3

8

n+ 1
4

)
. (4)
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For the case n = 50 and for r = 40, . . . , 50, E[Z(r)] are shown in Table
1 for the method of Royston and using (3) and (4), and also α = 1

2
, as

this is a version used in half-normal plots - see Section 5.2. It can be seen
that Blom’s approximation is much better that the first attempt (3) and is
better than that using α = 1

2
. Only the largest 11 order statistics have been

shown. The table for r = 1, . . . , 11 is the same but for a change of sign. The
approximations are all poorest in the tails. Blom’s approximation remains
the best for all r.

r exact α = 0 α = 3
8

α = 1
2

40 0.8023 0.7868 0.8014 0.8064
41 0.8732 0.8557 0.8722 0.8779
42 0.9489 0.9289 0.9477 0.9542
43 1.0304 1.0074 1.0290 1.0364
44 1.1195 1.0927 1.1177 1.1264
45 1.2185 1.1868 1.2163 1.2265
46 1.3311 1.2928 1.3283 1.3408
47 1.4637 1.4157 1.4600 1.4758
48 1.6286 1.5647 1.6235 1.6449
49 1.8549 1.7599 1.8475 1.8808
50 2.2491 2.0619 2.2433 2.3263

Table 1: Exact and approximate values of E[Z(r)] for n = 50, showing r =

40, . . . , 50: α = 0 corresponds to (3), α = 3
8 to Blom’s approximation (4) and

the final column uses α = 1
2 , an approximation that is sometimes encountered.

3.3 Dependence of order statistics

It is obvious that the order statistics, X(1), . . . , X(n) are dependent, even
when the underlying sample values X1, . . . , Xn are independent. To see this
note that while Pr(X1 < x | X2 < x) = Pr(X1 < x), it is clear that
Pr(X(1) < x | X(2) < x) = 1 ̸= Pr(X(1) < x), as the smallest sample
value must be less than the second smallest. Elucidating more quantitative
information requires straightforward but intricate analysis, details of which
are in Appendix A. From the Appendix, the joint distribution of X(r) and
X(s), with r < s, frs(x, y) can be written as frs(x, y) = 0 for x > y and for

13



x < y

frs(x, y) =
n!

(r − 1)!(s− r − 1)!(n− s)!

× F (x)r−1[F (y)− F (x)]s−r−1[1− F (y)]n−sf(x)f(y).

(5)

This expression is not that important in itself but it is needed to evaluate the
n × n dispersion matrix of the order statistics. This is used in the Shapiro-
Wilk test (see Section 4.1), although it turns out that even there the role of
the covariances is not that critical, and may even be inappropriate.
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4 Testing for Normality: Shapiro-Wilk and

Shapiro-Francia

If we are uncertain whether or not a sample is Normally distributed, perhaps
we should test the null hypothesis that the sample comes from a Normal
distribution? This is certainly possible and can be done by several methods.
Perhaps the simplest are methods to test if the sample skewness and kurtosis
are compatible with the values of 0 and 3, respectively. A more sophisticated
method is that proposed by Shapiro & Wilk (SW) (Shapiro and Wilk, 1965),
and its slightly simpler cousin due to Shapiro & Francia (SF) (Shapiro and
Francia, 1972), and these will be introduced and explained in this Section.
There are, of course, many ways to test for Normality, and there are whole
books on the subject, see, e.g., Thode (2002). We focus on SW and SF be-
cause they turn out to have good properties and, compared with approaches
such as testing skewness and kurtosis, the way they test for Normality prob-
ably needs more explanation.

Before doing so it worth pausing to think whether the use of such tests is
likely to be helpful, and some issues to bear in mind are below.

• Some tests, such as a test for skewness, will focus on one aspect, and
even if there is no evidence of non-Normal skewness, there could be
other aspects that mean the data are not Normal. Also, the tests may
lack power and non-significant results may be uninformative.

• Other tests, such as the SW and SF tests, are focussed on the very
general alternative that the data are not Normally distributed. Here
power can be even more of a problem, although such tests do avoid
focussing on one aspect of Normality.

• Perhaps the most important thing to keep in mind is why you want
to assess data for Normality. If you simply want some reassurance
that the data are broadly in conformity with the assumptions made
in your model, then you may well be able to accept some departure
from Normality. Many statistical models are very forgiving of modest
departures from Normality.

• More care is needed if the analysis puts a heavier reliance of the as-
sumption of Normality. One example of this is when using data to
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compute reference ranges, for example age-related quantiles of height
for children. It is much more efficient to estimate the third centile of a
Normal population by m−1.88s than by using some version of X(0.03n).
However, the assumption of Normality is now of much more importance
than when assessing the fit of a regression model.

• Although not very helpful advice, assessment of Normality is probably
akin to Whistler’s comment2.

4.1 The Shapiro-Wilk test

As we have observed elsewhere, if Y1, . . . , Yn is a sample from a Normal dis-
tribution with unknown mean µ and unknown variance σ2, then Y(i) can be
written as µ+σZ(i), where Z1, . . . , Zn are independent random variables from
a standard Normal distribution. It will be convenient to write mi = E[Z(i)],
with m being the vector of the mi, and V for the dispersion matrix of the
Z(i). As E[Y(i)] = µ + σmi, a regression of the ordered sample values on m
will yield an intercept that estimates µ and a slope that estimates σ. The
latter is based on the assumption that the data are Normal. The usual esti-
mate of σ2 is valid for any distribution and it is the comparison of these two
estimates that is the basis of the SW test.

Assuming the Yi are Normal, then the Y(i) have dispersion σ2V , so the most
efficient estimator of (µ, σ)T is a generalised least squares regression, with
weight matrix V −1. If 1 denotes an n-dim vector of ones, then(

µ̂
σ̂

)
=

(
1TV −11 1TV −1m
mV −11 mTV −1m

)−1(
1TV −1y
mTV −1y

)
(6)

where y is the vector of the ordered values of the observed sample. Con-
siderable simplification is possible because V −11 = 1 and 1Tm = 0. The
latter would be true for any symmetric distribution but the former requires
the observations to be Normal. These results, and some others of use be-
low are derived in Appendix B. Consequently we have µ̂ = y and σ̂ =
mTV −1y/(mTV −1m).

2James Whistler (1834-1903) was an American-born artist. A painting that had taken
him two days to complete cost 200 guineas. When asked if the work of two days was worth
200 guineas, he replied it was for the work of two days and the experience of a lifetime.
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Shapiro & Wilk defined their statistic, W , as essentially the ratio of the
square of this estimator of σ to the usual estimator of σ2, namely s2. In fact,
Shapiro and Wilk chose the numerator to be (aTy)2, where a is a unit vector
that is proportional to V −1m, and the denominator as (n − 1)s2. As s2 is
independent of W (another application of Basu’s Theorem), we have the null
expectation of W to be

E[W ] =
E[(aTy)2]

E[(n− 1)s2]
=

mTV −1m(1 +mTV −1m)

(n− 1)mTV −1V −1m
.

These quadratic forms, being based on the standard Normal variable, can be
calculated. A simulation of a million samples of size 50 provided an estimate
of V , while m can be found from evNormOrdStats in library EnvStats in
R . To provide some feeling for these quantities, the values for n = 50 are

E[W ] =
97.2048× 98.2048

49× 201.3733
= 0.967.

The mean is inevitably less than 1 because an application of the Cauchy-
Schwarz inequality shows that W ≤ 1.

The null hypothesis is discredited when W is too small. An important contri-
bution to determining the significance level of the test was made by Royston
(1982a), who applied a Box-Cox transformation to 1 − W to facilitate the
calculation of percentage points.

4.2 The Shapiro-Francia Test

The main difficulty with the SW test is computing V , which is used because
it is proportional to the dispersion matrix of the observations in the regres-
sion estimating µ and σ. However, using ordinary least squares, rather then
generalized least squares, will still provide consistent estimators for µ and σ
and, as V is no longer needed, will be considerably easier to calculate.

This is the approach suggested by Shapiro and Francia (1972) and the result-
ing test is the Shapiro-Francia (SF) test. The test statistic, Wf , has the same
form as (6) but with V replaced by I. So Wf uses (bTy)2 in the numerator,
where b is a unit vector proportional to m, and (n−1)s2 in the denominator.
As with W , Wf is independent of s2 so

E[Wf ] =
mTV m+ (mTm)2

(n− 1)mTm
.
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For samples of size 50 mTm = 47.4217, mTV m = 23.1485, and hence
E[Wf ] = 0.9778. Again the Cauchy-Schwarz inequality indicates Wf ≤ 1.
For this test if y = y+ sm, i.e. if the observed sample is distributed exactly
as its expectation, then Wf = 1, thus demonstrating that it is values in the
lower tail of the distribution of Wf that are associated with non-Normality.

The properties of Wf and W are very close, so there is no compelling reason
to use the complicated W . Indeed, Wf can be further simplified by replacing
mi in b with the approximation suggested by Blom in (4). This was first
proposed by Weisberg and Bingham (1975), who confirmed that using these
values gives a test statistic that is almost indistinguishable from Wf .
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4.3 The tests in practice

On the left is a screenshot of the
application of the SW and SF tests
in R : the former from the base
function shapiro.test and the
latter using ShapiroFranciaTest

from the DescTools package.

The tests have been applied to
three samples, each of size 50. The
variable Z is from a Normal pop-
ulations, T is from a t-distribution
with 6 df, i.e. a highly leptokur-
tic distribution, and E is from an
exponential distribution with unit
mean, i.e. a highly skewed distri-
bution.

As can be seen, p-values exceed-
ing 0.05 were obtained, not only
for the Normal sample but also for
the t-sample. For the exponential
sample, highly significant p-values
were obtained. This illustrates
that the tests have much less power
against alternatives that have non-
Normal kurtosis than non-Normal
skewness - something we might an-
ticipate from a histogram.

These functions are also useful in that they allow the user to assess rapidly
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the power of a test in a particular circumstance. For the example of samples
of size 50 from a t-distribution on 6 df, the code below allows an estimate of
the power of the SW test, which is about 0.3

4.3.1 Examination of residuals

In a previous article, assessment of residuals was considered as a way to de-
cide if the assumptions underpinning a model were reasonable. One common
assumption, namely the Normality of the residuals, was deferred until this
article, because a common method of assessment is to use a NPP of the es-
timated residuals. In addition, tests such as SW and SF can be applied to
the residuals.

Consider the data on Ophthalmic Index (OI) and age used in the article on
residuals. Fitting the models with either OI or log(OI) as the response vari-
able gives rise to the test results in Table 2 when SW and SF are applied to
the standardized residuals. The results from the two tests are very similar
and both show that the model fitted to OI results in residuals that are not
Normal, whereas there is no evidence of the residuals for the model using
log(OI) departing from Normality.

Shapiro Wilk Shapiro Francia
OI W = 0.9543, p = 0.0015 Wf = 0.9545, p = 0.0024
log(OI) W = 0.9834, p = 0.235 Wf = 0.9837, p = 0.212

Table 2: Shapiro-Wilk (W ) and Shapiro-Francia (Wf ) statistics and associated p-
values applied to the standardized residuals from the regression of OI or log(OI)
on age

The NPP plots applied to the standardized residuals from both models are
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shown in Figure 5. The NPP for residuals from the OI regression, black
circles, appears to be curved above the line, whereas the NPP for the log(OI),
red crosses, conforms more closely to the fitted line.
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Figure 5: NPP of standardized residuals for response OI (black circles) and
log(OI) (red crosses), with ordinary least squares fitted lines

4.3.2 SW versus SF tests when applied to residuals

The SF test was introduced as a numerically simpler test that was not much
worse than the theoretically superior SW. The theoretical superiority of the
SW test is based on its use of generalized least squares with weighting matrix
V −1, where V is the dispersion matrix of the ordered values from a sample of
independent standard Normal variables. However, when applied to residuals
the original sample values are not independent.
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From an intuitive point of view, it might be thought that the dependence
induced by ordering would be much stronger than that affecting residuals.
The former affects each ordered value - e.g. the 3rd smallest value cannot
be smaller than the 2nd smallest value, nor larger than the 4th smallest.
On the other hand the dependence between residuals arises from the linear
constraints to which they are subject: for the OI example there are 101
observations constrained by just two linear conditions. This can be seen in
the correlations matrices in Table 3 for n = 7, a small sample size chosen so
that the whole matrix can be presented. The residuals come from fitting a
simple straight line (so the dependence of seven points with two constraints
will exaggerate that seen in more realistic examples), and the correlations of
the ordered values are found from simulating a million samples of size seven.



1.00 0.62 0.45 0.34 0.26 0.19 0.11
0.62 1.00 0.73 0.56 0.43 0.31 0.19
0.45 0.73 1.00 0.77 0.59 0.43 0.26
0.34 0.56 0.77 1.00 0.77 0.56 0.34
0.26 0.43 0.59 0.77 1.00 0.73 0.45
0.19 0.31 0.43 0.56 0.73 1.00 0.62
0.11 0.19 0.26 0.34 0.45 0.62 1.00




1.00 −0.06 −0.19 −0.39 −0.03 −0.42 0.07
−0.06 1.00 −0.17 −0.04 −0.33 −0.02 −0.46
−0.19 −0.17 1.00 −0.20 −0.17 −0.20 −0.19
−0.39 −0.04 −0.20 1.00 0.00 −0.48 0.13
−0.03 −0.33 −0.17 0.00 1.00 0.03 −0.55
−0.42 −0.02 −0.20 −0.48 0.03 1.00 0.18
0.07 −0.46 −0.19 0.13 −0.55 0.18 1.00


Table 3: Correlation matrices for ordered values of sample with n = 7 (upper
matrix) and for residuals from simple regression (lower matrix).

Table 3 seems to bear out the intuition rehearsed in the previous paragraph:
the correlations for the order statistics are positive and have larger mag-
nitudes than for the residuals, whose correlations are also largely negative
. As such, when applying the SW test to residuals one might expect the
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correlation induced by the ordering will be the main contributor to the de-
pendence of the ordered residuals, so the use of weighting by V −1 may still
be reasonable. However, using n = 50 and calculating the correlations of
the ordered values of from a million simulations of i) independent standard
Normal variables and ii) standardised residuals from a simple regression gives
results shown in Figure 6.
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Figure 6: Plot of correlation matrix of ordered independent observations (left) and
ordered residuals (right)

Thus the dispersion matrices of the two forms of order statistics are quite dif-
ferent: the dispersion matrix shown in Figure 6(b) includes negative values,
which are absent in Figure 6(a). As such, the use of V −1 in the computa-
tion of SW may be misplaced and assuming the more non-committal identity
matrix used in the SF test may have theoretical as well as numerical advan-
tages. This observation does not seem to appear in the literature and is only
partial - e.g. the comparison in Figure 6 compares correlation not covariance
matrices, but it is an issue worth keeping in mind.

A further comment on the assessment of the Normality of residuals that is,
perhaps, worth making at this point, concerns the normality of ϵ, the unob-
served residuals which the model assumes to be Normal, and the estimated
residuals, ϵ̂, which are the quantities we assess for Normality in lieu of the
ϵ. Because ϵ̂ = (I −P )ϵ, the estimated residuals are linear combinations of
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the actual residuals. Consequently, even if ϵ departed from Normality, the
ϵ̂ might be expected to depart less from Normality because of the Central
Limit Theorem. This is a phenomenon sometimes referred to as supernor-
mality, a term first coined by Gentleman and Wilk (1975) in the context of
cross-classified data. In most circumstances this is something to be aware of,
rather than worried by.

5 Some miscellaneous topics

In this final section a few topics related to the above are described briefly.

5.1 Q-Q plots and P-P plots

The NPP discussed above is an example of a Q-Q plot, short for quantile-
quantile plot. In general a Q-Q plot plots the ordered values from the sample
against the quantiles of a suitably chosen distribution. As it is the quantiles
that are plotted, the range of the axes is determined by the support of the
distribution in question. An approximate version is that the Y(i) are plot-
ted against F−1(E[U(i)]) = F−1(i/(n + 1)), for the appropriate distribution
function F (·).
An alternative is to plot a P-P or probability-probability plot. Essentially
this amounts to applying F (·) to both axes. The abscissa is straightforward,
being i/(n+1), while the ordinate needs some care to make the scale correct.
For a Normal P-P plot, the ordinate is Φ((Y(i) − µ̂)/σ̂), i.e. unlike the Q-Q
plot, parameter estimates are required. The range of both axes will be from
0 to 1 and if the data are Normal then the plot will vary about the line y = x.

Unlike a QQ-plot, where the best fit line needs to be determined, with a
PP-plot the line the data should follow if the assumptions being tested are
true is always y = x. Examples are shown in Figure 7. Note the scales in
Figures 7(a) and 7(b) - while the plots are quite similar, it is perhaps hard
to see departures in the tail with the PP-plot. The PP-plots of the residuals
from the two models for the OI data are less easy to distinguish than is the
case for the QQ-plots shown in Figure 5.

While the choice between PP and QQ plots is, to some degree, a matter
of taste, most analysts probably prefer QQ-plots to assess goodness of fit.

24



Indeed, (Thode, 2002, p. 23) suggests that PP-plots are usually used when
both axes plot samples, where the aim is to see if they come from the same
population, rather than to assess if a sample has come from some prescribed
distribution.
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(a) QQ-plot of random Normal data
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(b) PP-plot of data in Fig. 7(a)

●
●
●●●●●●●●●●●●●

●●●
●●●●

●●●●●●
●●●●●

●
●●

●●
●

●●●●
●
●
●
●●

●●●●●●●
●●●●●

●●
●●●●

●
●●

●
●●

●
●●●●

●●●●
●
●●

●
●

●●●●●●●●
●

●
●●●●●

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

i/(n+1)

S
am

pl
e 

pr
op

or
tio

n

●

●●●●●●●●●●●●●

●●
●

●
●●

●●●●
●●

●●●

●●●●●
●
●●●

●
●●●

●
●
●●

●●●●
●

●
●●●●●●●●

●●●
●

●●●●●
●●●●●

●
●●●●●

●
●●●●

●
●●●

●
●●●●●●

●●●●
●

(c) PP-plots from OI regression

Figure 7: QQ and PP plots of same random Normal sample (a) and (b): PP-plots
of standardized residuals for regression of OI (black) and log(OI) (red) on age (c).
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5.2 Half-normal plots

Half-normal plots (HNPs) are QQ-plots based on the half-normal distribu-
tion. The half-normal distribution is related to the folded normal distribution
(Johnson et al., 1994, p. 170), the truncated normal distrbution (Johnson
et al., 1994, p. 156) and is an extreme form of the Skew-normal distribution
(Azzalini and Capitano, 2014). For our purposes we will take the half-normal
distribution to be the distribution of the modulus of a Normal distribution
with zero mean, N(0, σ2). In which case a random variable with this dis-
tribution is essentially σ|Z|, where Z is a standard Normal variable. The
HNP will then plot the data against the order statistics, W(i) of a sample of
Wi = |Zi|.

The abscissae in a HNP of a sample of size n can be found using the approxi-
mation F−1(U(i)) discussed in Section 3.2.2. For the half normal distribution
F (x) = 2Φ(x) − 1 (remember x > 0) and the approximate expected order
statistics, sometimes called half-normal scores, are Φ−1(1

2
(xi + 1)). A pos-

sibility is to set xi = i/(n + 1), i = 1, . . . , n but it is more usual to use
xi = (i − 1

2
)/n, as used by Hills (1969) and in the R function halfnorm in

the package daewr. Refinement of the approximation to the expected order
statistics of the half-normal distribution seems to have received less attention
than for the Normal distribution.

HNPs are used to assess Normality of variables expected to have zero mean
and are effective at highlighting individual values that may not conform to
this assumption amid data which generally seems to have zero mean. Early
use of HNPs was in the interpretation of high-order factorial experiments
(Daniel, 1959), where estimates for many main and interaction effects are
produced and where most of the population effects are expected to be zero,
so attention is on identifying the non-zero effects. Formal hypothesis test-
ing will quickly run into problems of multiplicity and, in any case, a more
informal assessment is usually needed to identify cases worthy of further in-
vestigation.

A similar application, due to Hills (1969), is the identification of genuine cor-
relations from a large correlation matrix, although writing in 1969 what was
considered large probably differs somewhat from current perceptions. Hills
first transformed the correlations to Normality, using zij = tanh−1 rij, and
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then considered a HNP of the |zij|. Points departing from the expected line
y = σx identify correlations worthy of further study - see Hills’s paper for an
interesting example.

HNPs can be used with residuals, as they have expected values of zero, with
the absolute value of the residual being plotted against the half-normal scores.
There are suggestions in Atkinson (1981) and Atkinson (1982) that HNPs
are preferred to NPPs, especially when used to identify outlying or influential
points. This opinion was later softened slightly, (Atkinson, 1985, p. 36), with
NPPs seen to be more informative for larger samples, say n > 100. HNPs for
the standardized residuals from the regressions of OI and log(OI) on age are
in Figure 8, where it seems that the greater departure of the residuals from
Normality for the regression of OI compared with log(OI) is clearer than in
Figure 5.

5.3 Envelope plots

The idea is to provide an envelope of points which will give some guidance to
the analyst trying to decide whether observed departures from the expected
line represent anything more than random fluctuation. While the envelopes
are motivated by ideas from hypothesis testing, the aim is more informal
and exploratory. They were probably first used, in the context of spatial
statistics, by Ripley (1977) but their application to regression appeared in
Atkinson (1981) and received further exposure in Cook and Weisberg (1982,
p.56), Atkinson (1982) and Atkinson (1985). They were quite fashionable in
the 1980s but are something of a rarity these days.

Envelope plots can be used for residuals that are scale-free, so apply to scaled,
standardized and deletion residuals but not the ordinary residuals ϵ̂i. The
idea is to augment the actual residual with residuals from 19 simulated re-
gression. At each expected normal order statistic or half-normal score, the
actual residual, together with the maximum and minimum residual at that
abscissa from the 19 simulations, are plotted. Each simulation is conducted
by regressing a sample of n standard Normal variables on the covariates used
in the regression. At first this may seem odd but, as the residuals are in-
dependent of scale and location, the fact that y and the standard normal
variables have different scales and locations is immaterial. These simula-
tions are, in effect, a device for producing residuals that have the same scale,
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Figure 8: Half-normal plots of standardised residuals for the regression of OI on
age (black circles) and log(OI) on age (red crosses)

location and dispersion as the actual residuals, provided the model is correct.

The R code for producing an envelope plot for the regression of OI on age
is shown below. As the simulated dependent variables are simply N(0, 1)
variables, the envelope can be used for this model and for the regression of
logOI on age, so this is included in the final line of the code.
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The resulting plot is shown in Figure 9, with the red points consistently
within the envelope, whereas the black points are consistently below the
envelope for half-normal scores between 1.5 and 2.

6 General remarks

Leaving aside specialised applications, such as the construction of centile
charts, most analysts will use the foregoing material to check the data broadly
conform to the assumptions of Normality in the model being fitted. In doing
so, discrepancies will often take one of two forms - local or global departures:
global departure are where the form of the model itself is under question,
whereas local departures are where only a few points do not seem to fit the
model. With global departures it is important not to be too demanding.
Some issues, such as skewness, can be addressed with a log transformation
and this can lead to better and more interpretable models. Remedial mea-
sures may be less obvious with other forms of departure but, in many cases,
such departures may be less troublesome: arguments based on the Central
Limit Theorem, and the inherent robustness of many techniques may mean
that such forms of departure might safely be overlooked.

Caution is especially important in the use of more formal methods, such as
the SW and SF tests. While the significant result obtained when OI was
regressed on age, and the non-signifcant result when logOI was used in-
stead, provided reassurance regarding the decision to analyse logOI, graph-
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Figure 9: Half-normal plots of standardised residuals for the regression of OI on
age (black circles) and log(OI) on age (red circles) with envelope from 19 simulated
regressions

ical methods would have been sufficient to suggest the need for transforma-
tion. In small samples both SW and SF have low power, so non-significant
results will be uninformative, while in large samples modest and unimportant
departures from Normality may give a significant result.

Quite often the main value in the application of diagnostic plots, including
NPPs and HNPs, is in the identification of outliers or other unusual points.
Of course, once identified, aberrant data need investigating and careful han-
dling. It may sometimes be appropriate to omit such points from a model if
their inclusion has a material effect on the values and interpretation of key
parameters, while ensuring that the omitted points are reported separately
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and the reasons for exclusion from the model documented.

This can be especially awkward when analysing data from clinical trials,
where the doctrine of analysis which has evolved over the last twenty or
so years regards omission of data points as a potent source of bias. While
broadly understandable, current dogma sometimes seems less troubled by the
possible distortion of treatment estimates caused by the inclusion of plainly
aberrant data. A general prescription for managing this issue is probably not
possible, and certainly unwise. When the issues are considered in the context
of a particular study, the scientifically appropriate approach, or approaches,
may be readily apparent. That these approaches may be difficult to reconcile
with current practice is not a reason to eschew diagnostic techniques which
have evolved over decades.
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A Joint distribution of two order statistics

The joint density of X(r) and X(s), s > r, frs(x, y), can be derived construc-
tively. For x < y, the probability X(r) ∈ (x, x + dx) and X(s) ∈ (y, y + dy)
is found as the probability that this event occurs and it is X1 that is X(r)

and X2 that is X(s) and then by multiplying by n(n−1), as any ordered pair
from X1, . . . , Xn could have taken the role of X1 and X2.
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The probability that X1 ∈ (x, x+dx) and X2 ∈ (y, y+dy) and that these are,
respectively, the rth and sth order statistics, requires that of the remaining
n− 2 elements of the sample r− 1 are less than x, s− r− 1 must have values
between x and y and the remaining n−s are greater than y. The probabilities
of an element of the sample falling in these intervals is F (x), F (y) − F (x)
and 1 − F (y), respectively. As the elements of the unordered sample are
independent, this gives (omitting the dx and dy),

frs(x, y) = n(n− 1)× f(x)f(y)

× (n− 2)!

(r − 1)!(s− r − 1)!(n− s)!
F (x)r−1[F (y)− F (x)]s−r−1[1− F (y)]n−s.

The second line comes from the classification of the n − 2 values into the
three intervals, namely less than x, between x & y and greater than y, which
is a multinomial probability (cf.1.4). Incorporating the n(n − 1) into the
numerator of the multinomial coefficient gives the expression in (5). Clearly
frs(x, y) = 0 if x > y.

B Some useful properties of V and m

Start with the observation that if Z has a distribution symmetric about 0,
then −Z has the same distribution as Z. If Z denotes the vector of an
ordered random sample from such a distribution, then the ordering means
that −Z does not have the same distribution as Z, but if we reversed the
order of the elements of −Z, then this would have the same distribution as
Z - e.g. Z(1) has the same distribution as −Z(n). This can be expressed more
precisely using the matrix R which reverses the order of a vector, e.g. for
the 5× 5 case:

R5 =


0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

 .

Note that RT = R and RR = R2 = I, i.e. R is self-inverse. Then the
above argument can be expressed asZ having the same distribution as−RZ.
Consequently

E[Z] = E[−RZ] ⇒ m = −Rm
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and

var[Z] = var[−RZ] ⇒ V = RV R.

This shows that the mean is skew-symmetric, i.e. the vector reversed is
the negative of the original vector, and the dispersion matrix is unchanged
by reversing the order of the columns and the rows. It follows, e.g., that
1Tm = 0 and V −1 = RV −1R. An important result for the SW test is
that a = V −1m is skew-symmetric. This follows by noting that Ra =
RV −1RRm = −V −1m.

Another result which helps to simplify and understand the calculations un-
derpinning the SW test is that for a standard Normal distribution is that
V 1 = 1. For this result, Normality is needed because symmetry alone is
insufficient - e.g. it does not apply to samples from a t-distribution. The
argument needs a little development and uses Basu’s Theorem (cf. 1.6) and
the independence of the sample mean and variance (cf. 1.2).

Suppose X1, . . . , Xn are i.i.d. variables from a Normal distribution with
mean µ and variance σ2, Then the sample mean, X and sample variance s2

are complete and sufficient for µ, σ2. Also, the distribution of the statistic

U =

(
X(1) −X

s
, . . . ,

X(n) −X

s

)
,

does not depend on µ or σ2. This is because U is scale and location invariant.
Therefore, by Basu’s Theorem U and (X, s2) are independent. As X and s2

are independent, X is independent of sU , i.e. X is independent of X(r) −X,
for any r = 1, . . . , n. Consequently, cov[X, (X(r)−X)] = 0. Applying this to
a standard Normal sample (Z1, . . . , Zn) we get cov[Z,Z(r)] = var[Z] = n−1.
It follows that:

E[(
∑
i

Z(i))(Z(r) −mr)] =
∑
i

E[Z(i)(Z(r) −mr)]

=
∑
i

cov[Z(i), Z(r)] = cov[nZ,Z(r)] = 1,

where we have used result 1.5. As this holds for all r = 1, . . . , n, we have
V 1 = 1. From this it follows immediately that V −11 = 1.
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