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1 An example

Consider the data shown in Figure 1. They are from a study of nutrient
intakes in six schools in Northumberland, surveyed in 2003 and again in 2009
(Spence et al., 2013). The variable shown is the average amount of vitamin C
(in mg) in school (not packed) lunches over three consecutive days for children
in these two years. In the paper these data were part of an analysis which
used a random effects regression analysis, so that numerous other covariates
could be accommodated. However, for illustrative purposes we can focus on
a simple comparison between the two years. Summary statistics for the two
years are in Table 1.

Year n Mean SD Min Q1 Median Q3 Max
2003 233 14.5 8.6 0.1 8.5 12.5 17.4 52.4
2009 323 60.0 38.4 5.8 26.2 59.1 77.8 184.7

Table 1: Summary statistics for the vitamin C intakes (mg)

When comparing two groups, initial thoughts probably turn to a t-test, but
anyone faced with comparing the vitamin C intakes between these two years
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(b) Sample in 2009 (n = 323)

Figure 1: Raw data on vitamin C content of school lunches (Spence et al.,
2013)

would likely pause before doing so. The t-test assumes two Normally dis-
tributed groups, with a common population standard deviation (SD), and
this seems far from the case here. The distributions in Figure 1 look skewed
and quite far from Normal, and each SD is more than half the corresponding
mean (so that an assumption of Normality would imply a reasonable propor-
tion of negative vitamin C values in the population). Moreover, the means
(and medians, in this example) are very different from the mid-point of the
distribution, as based on the minimum and maximum values.

2 Approaches to comparing the years

2.1 Distribution-free or non-parametric methods

These methods are often the first port of call for those faced with data which
do not appear Normal. The methods are usually based on ranks and is a route
that is, perhaps, taken more readily by non-specialists. One of the reasons
for this may be that it will often be thought that because the methods do
not assume any specific distribution, they are assumption-free. However, this
is not the case, especially when it comes to estimation. While the methods
do have their uses, they should be used only after considering the following
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points.

1. The usual methods, such as Mann-Whitney, assume that the data in
group 1 follow a distribution F1(x) and in group 2, F2(x), and the hy-
pothesis associated with the usual test is H0 : F1(·) = F2(·). So it tests
that the samples come from the same population. The conventional
unpaired t-test, with population SDs assumed equal, does the same,
with F = Φ. However, variants of the t-test which do not assume equal
SDs assess common location of the populations, notwithstanding pos-
sible differences in dispersion. Of course, it may well be that there is
limited value in a test of location, while allowing other aspects of the
population to differ.

2. These tests are based on ranks - so having put great effort into measur-
ing some variable, its precise value is ignored in favour of its rank rela-
tive to other values. This might be a strength, insofar as it allows data
arising only from ordinal categories to be analysed, and in other cases
provides some insensitivity to large values. With rank-based methods,
whether or not analysing the observed values directly is desirable in a
given application is worth considering.

3. As we so often incant, hypothesis testing is only a small part of the
analysis of data, and estimation, especially interval estimation, is al-
ways emphasised. Estimation when using these methods often focuses
on the medians in the two groups, say θ1, and θ2. The use of medians
for data such as that in Figure 1 is often advised as medians are less
affected than means by some unusually large values in the sample. In
terms of the theory of robust estimators (Huber, 1981), the median
has a high breakdown point of 50%, i.e. up to 50% of the values in a
sample can be changed without changing the value of the median. This
might strike some as a large proportion, suggesting that the median is
perhaps a little too robust.

4. Estimates of the median, or median difference are seldom accompanied
by standard errors but this is not too troublesome as interval estimators
are readily available. However, most methods in common practice are
based on the assumption that one population is simply a translation
of the other, i.e. F2(x) = F1(x − ∆), where ∆ is, say, a difference
in medians. The assumption that the two populations share the same
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dispersion applies, so the idea the method is assumption free is not
right. Moreover, producing an interval estimate for the parameter ∆
makes the term non-parametrics slightly irritating.

5. A comprehensive examination of a large dataset will seldom comprise
simple group comparisons, and often analyses taking simultaneous ac-
count of many variables need to be presented. Most of the commonly
used distribution-free methods are not rich enough for the more elabo-
rate analyses that are commonplace in biostatistics. Sometimes you see
simple, preliminary analyses done using distribution-free methods, but
these are followed by the fitting of a normal-theory model to the same
data, because a suitably sophisticated distribution-free is not readily
available. This can result in an awkward and unconvincing presenta-
tion.

2.2 Just ignore the skewness

One could just analyse the data as it has been collected and ignore the
technical problems the skewness poses. Certainly, for samples of reasonable
size, such as those in Figure 1, an analysis based on means may be entirely
respectable, given the close approximation to Normality conferred on the
sample means by the Central Limit Theorem. The difference in sample SDs
is a mite troubling1, but as just remarked, the assumption of equal population
dispersion is also present in a distribution-free analysis. At least with a t-test
you could use a version which does not make this assumption.

2.3 Logs: why should they be used?

Of course, most statisticians would not use either approach outlined in Sec-
tion 2 - they would take logs of the data. The reason usually adduced for this
is that the logs of skewed data, such as in Figure 1, will be closer to Normal
than the untransformed data. This is often seen by collaborators as a baffling
device statisticians use in the quiet of their offices to maintain their purity,
and is a price that has to be paid for having professional statistical help.
Indeed, statisticians often emphasise, in courses to non-specialist colleagues,
the moral turpitude of analysing skewed data using Normal-theory methods.

1But note that it would not pose a problem if the sample sizes were approximately
equal
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As most non-statisticians are less than confident with logs, this probably
explains the frequent use of distribution-free methods. After concerns over
sample size, perhaps the second most common issue confronting consulting
statisticians is the cry that “my data aren’t Normal” (or, unforgivably, “my
data are non-parametric”).

However, perhaps the real benefit of taking logs is because of the inadequacy
of the interpretation of the methods in Section 2 when applied to skewed,
positive variables. This is something that should be equally concerning, and
equally apparent to statistician and collaborator alike. The description of
the difference between the groups from either approach presented in Section
2 is in terms of a confidence interval for a difference in means or medians,
i.e. it is envisaged that one population is simply a translation of the other.
While this may be entirely plausible for two groups of systolic blood pressure,
with means typically around 130 mmHg (with SD of 18 mmHg), it is very
unconvincing for the vitamin C data: see Figure 2.

The difference in mean, or median, between the 2003 and 2009 data is about
50mg, and the mean in 2009 is about four times that in 2003. However, the
2003 data shifted by 50mg, shown in Figure 2b, looks nothing like the 2009
data shown in Figure 1b. In the shifted data the dispersion has not changed
from 2003, whereas the SD in 2009 is much larger than in 2003 (see Table
1), and the shape of the shifted distribution, with a gap of over five SDs be-
tween the minimum value and zero, is quite different. Indeed, it often seems
that skewed positive clinical variables have many values ‘close’ to zero with
a reasonable positive tail - to put it very crudely. It is as if the positivity
constraint is what is driving the skewness.

So, the simple shift, implicit in the analyses in Section 2, gives a very poor
description of the difference between the 2003 and 2009 vitamin C values.
What might be a better description? Suppose that the 2003 vitamin C obser-
vations are denoted by xi, i = 1, . . . , n = 233, Note also that the mean of the
2009 values is about four times that of the 2003 values. Consider, purely for
illustration, the values ui = xifi, where the fi are independent realisations
from a Gamma distribution with mean 4 and variance 1. Histograms of the
scaled values, ui, and the 2009 sample are are shown in Figure 3.

While the two histograms are far from identical, the scaled values in Figure
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(b) Vitamin C shifted by c. 50mg

Figure 2: Plots of shifted hypothetical populations of systolic BP and shifted
2003 vitamin C data.

3a are much more similar to the 2009 observations than the shifted values
in Figure 2b. A better description of the change in vitamin C content from
2003 to 2009 is likely to be found from a multiplicative change rather than
an additive one. As standard statistical techniques deal in additive changes,
perhaps the principal contribution of the log transformation is that it allows
multiplicative changes to become additive ones.

3 Using the log transformation

The usual approach to using a transformation in a statistical analysis using
Normal-theory methods is as follows.

1. Select a suitable transformation, g(·), so that the g(xi) have a distribu-
tion that can reasonably be assumed to be Normal: here xi, i = 1, . . . , n
are the observed data.

2. Analyse the g(xi) using standard methods.

3. Present the results of the analysis on the scale of the original observa-
tions, usually by appropriate use of the inverse transformation, g−1(·).
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(b) Vitamin C: 2009 values

Figure 3: Vitamin C values from 2003 scaled by Gamma variables and ob-
served values from 2009

Most of the time statisticians emphasise point 1, with g(.) chosen so that the
transformed data have desirable properties: this is the main aim presented
in Box and Cox (1964). However, if point 3 cannot be accomplished in a way
that is compelling and comprehensible, then the whole exercise will be much
less convincing.

3.1 Taking logs of the vitamin C data

Suppose that the observations on vitamin C in 2003 are x1, . . . , xn3 , with
n3 = 233 and for 2009 they are y1, . . . , yn9 , with n9 = 323. If the analysis
uses the logged values, then the main summary will be the arithmetic means
of the logged values, namely2

m3 =
1

n3

n3∑
i=1

log xi

and

m9 =
1

n9

n9∑
i=1

log yi.

2These are natural logs but in practical terms the base is immaterial
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Our earliest encounters with means, or averages, would be that m3 is a
‘typical’ value for vitamin C values, but on the log scale. It is then quite
natural to compute exp(m3) in order to retrieve a ‘typical’ value on the
familiar scale on which the xi were measured. Thus exp(m3) and exp(m9)
provide plausible summaries of location for the two groups.
Perhaps the most important use of m3 and m9 is to summarise the difference
between 2003 and 2009. To this end it is natural to compute m9 −m3, i.e.
the difference on the scale with a Normal distribution, here the log scale.
Is it sensible to anti-log this quantity, i.e. exp(m9 − m3), to get back to a
familiar scale? How does this relate to exp(m3) and exp(m9)? For the log
transformation, this step provides one of its most valuable properties, namely

exp(m9 −m3) =
exp(m9)

exp(m3)
.

So the antilog of the difference in means is the ratio of the anti-logged m3

and m9. This has two virtues

1. The anti-log of the principal measure of the difference between years is
determined by the individual means.

2. The difference between the years is naturally quantified by a ratio, i.e.
a multiplicative difference.

Point 1 is important because it is really only point estimates where it is
intuitively clear that applying g−1(·) is appropriate.
Describing differences in terms of a ratio - such as “mean vitamin C levels
were 3.9 times higher in 2009 than 2003” - is simple, understandable and is
often very attractive to collaborators.

3.2 The geometric mean

3.2.1 Definition and elementary properties

In the previous subsection it was indicated that means are related multiplica-
tively but this implicitly refers to exp(m3) and exp(m9) as means. This is
correct but they are not arithmetic means. Note that, for example,

exp(m3) = exp

(
1

n3

n3∑
i=1

log xi

)
= n3

√√√√( n3∏
i=1

xi

)
,
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which is the geometric mean of the observed vitamin C values. Note that
the geometric mean is only defined for strictly positive values.

1. The geometric mean is a widely studied quantity, which has a similar
elementary motivation to the arithmetic mean - the values are combined
by multiplying rather than adding. If the geometric mean of n elements
is Gn and the arithmetic mean is An, then

Gn ≤ An.

with equality only if all elements of the sample are equal.

2. With positively skewed data, the median is less than the arithmetic
mean and, usually, the geometric mean is closer to the median than
the arithmetic mean.

3. Large values perturb the geometric mean less than the arithmetic mean
because the log transformation reduces the influence of large observa-
tions.

4. As such, for skewed data, the geometric mean can be seen as a useful
compromise between the excessive sensitivity of the arithmetic mean
and the overly robust median.

5. The geometric mean can be sensitive to changes in small values - see
later.

3.2.2 Some theoretical considerations

The log transformation works well with various skewed distributions of the
sort shown in Figure 1, but theoretical matters are most readily developed if
the skewed data are assumed to have a log-Normal distribution. A positive
random variable, Y , has a log-Normal distribution if Y = exp(X), where X
is Normally distributed with mean µ and variance σ2.
The following properties are worth noting. In doing so, it is helpful to recall
that the moment generating function (MGF) of a Normal variable is

M(t) = E[exp(tX)] = exp(µt+ 1
2
t2σ2).

1. As Y = exp(X), E[Y ] = M(1) = exp(µ+ 1
2
σ2). So the arithmetic mean

of Y is larger than exp(µ).
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2. As exp is monotone increasing, 1
2
= Pr(X < µ) = Pr(Y < eµ), so

exp(µ) is the median of Y .

3. The variance of Y is M(2) − M(1)2 = exp(2µ + σ2)(exp(σ2) − 1) =
E[Y ]2(exp(σ2)− 1). So the variance of Y depends on µ and, moreover,
is proportional to the square of its mean. Note that the coefficient of
variation, i.e. the SD divided by the mean, is

√
eσ2 − 1: and for small

σ, this is approximately σ.

4. The geometric mean of a positive random variable, Y , is defined as
exp (E[log Y ]). For log-Normal Y , this is exp(µ), i.e. in this case the
geometric mean coincides with the median.

5. Note that, regardless of the distribution of Y , its geometric mean is
always less than E(Y ), i.e. the arithmetic-geometric mean inequality
carries over to random variables. This follows by noting that log is
concave and applying Jensen’s inequality (Chung, 1974, p.47).

4 Application of logs to vitamin C data

The logs of the vitamin C values are shown in Figure 4 and are closer to
Normal than the original distributions. Summary statistics for the logged
values are in Table 2.

Year n Mean SD Mean (logs) SD (logs) Geometric mean
2003 233 14.5 8.6 2.491 0.680 12.1
2009 323 60.0 38.4 3.853 0.752 47.2

Table 2: Arithmetic and geometric means and associated quantities for vita-
min C intakes: means and SD in mg

The geometric means in Table 2 are indeed smaller than the arithmetic means
and, indeed, smaller than the medians shown in Table 1. The ratio of the
SDs on the log scale is much closer to one than that for the SDs on the
original scale.
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Figure 4: Histograms of the log (base e) vitamin C for 2003 and 2009

4.1 Main comparison

The principal comparison is now made through

exp(3.853− 2.491) = exp(1.362) = 3.90 =
exp(3.853)

exp(2.491)
,

that is, the geometric mean vitamin C intake in 2009 was about 3.9 times
what it was in 2003.

4.2 Measure of uncertainty

This is where some care is needed. The basic notion is that while it is
sensible to apply g−1(·) to point estimates of g(·)-transformed quantities, it
is far from clear that applying g−1(·) to measures of spread or difference will
yield anything meaningful.
The analysis has been carried out on the log-scale and on that scale the
uncertainty in the difference in means is readily presented in terms of a
confidence interval. So, in the usual way, a 95% confidence interval is

dL, dU = (m9 −m3)± 1.96× 0.723

√(
1

233
+

1

323

)
= (1.241, 1.485)
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As dL and dU are estimates of the 2.5% and 97.5% points of the sampling
distribution of the difference in sample means, it is legitimate to anti-log
these to get the corresponding points for the sampling distribution of the
ratio of geometric means, namely exp(1.241) = 3.46 and exp(1.485) = 4.41.
Thus the results of the analysis can be more fully given by indicating that
the geometric mean vitamin C intake in 2009 is 3.90 times that in 2003, and
the 95% confidence interval for the factor 3.90 is (3.46,4.41). Note that the
point estimate is less than the mid-point of the confidence interval: such
asymmetric interval estimates are to be expected for skewed distributions.

4.3 Hypothesis test

The test of the hypothesis that µ3 = µ9, i.e. the equality of the arithmetic
means on the log scale is the same, assuming a log-Normal distribution, as
the test of the equality of the geometric means, eµ3 = eµ9 . So the t- and
p-values to be quoted are those from the t-test on the log scale, which for
the vitamin C data are 17.8 and p < 10−15. Note that testing the equality
of the arithmetic means on the log scale does not correspond to testing the
equality of the arithmetic means on the original scale, unless the variances
in the two groups are taken to be the same.

4.4 Does anti-logging the sample SD make sense?

While anti-logging the mj yields an interpretable and useful quantity, there
is little value in presenting exp(s), where s is the sample SD of the logged
values. It is certainly not the SD of the unlogged data. For skewed data the
spread is usually related to the mean - Table 1 shows that the mean and SD
are notably larger for 2009. As such the variance of a skewed variable will
usually be partially determined by measures of location as well as spread.
Thinking in terms of log-Normal observations, the variance is dependent on
µ, i.e. exp(2µ + σ2)(exp(σ2) − 1). For this distribution, µ cannot feature
in the distribution of s, so exp(s) cannot be directly interpreted in terms
of dispersion on the unlogged scale3. Measurement of uncertainty is best
presented in terms of interval estimates, with the standard error playing no
explicit role.

3As seen above, exp(s2) is related to the coefficient of variation.
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5 Some miscellaneous comments

5.1 Variance stabilising transformations

The analysis of the results is much easier if the variation in the data is
largely unrelated to the mean. We add ϵs at the end of our models and
give them zero means and constant variances. However, real data, especially
skewed data, will often have variation that depends on the mean level of the
response. This is quite natural - a quantity may have a constant percentage
variation, which will translate to varying additive variances in groups with
different mean responses. To find a transformation such that on the new
scale the variance is largely constant can be done using the delta-method.
Suppose X is a (positive) random variable and f(·) is a transformation such
that var(f(X)) = σ2 (not a function of µ), then

var(f(X)) ≈ var(f(µ) + (X − µ)f ′(µ)) = [f ′(µ)]2var(X) = σ2.

If var(X) = kµ2 (i.e. the SD of the response is proportional to µ), then we
need f ′(µ)µ to be independent of µ, i.e. f(·) = log(·).
If the mean and variance are related, then it is perhaps natural for the vari-
ation to be proportional to the mean on the same scale as the observations,
i.e. the dependence is such that it is the SD, not the variance, that is pro-
portional to the mean. This leads to the log being the transformation which
stabilises the variance - something reflected in Table 2.

5.2 Effect of log transforming on positive random vari-
ables

Suppose that X is a positive random variable with mean µ and SD σ. If the
mean is similar to the SD, say σ/µ is up to, say, 2, then the distribution of
X is likely to be quite skewed, and a log transformation will be helpful. If
the CV, σ/µ, is small then writing X = µ+σU , so U has zero mean and SD
one, then

log(X) = log(µ+ σU) = log(µ) + log(1 +
σ

µ
U) ≈ log(µ) +

σ

µ
U.

Consequently, log(X) is a linear transformation ofX, with approximate mean
log µ and SD σ/µ, i.e. the CV of X is approximately the SD of log(X).
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In practical terms this suggests that if a variable is noticeably skewed (large
CV), then logging it will be helpful, whereas for smaller CVs, logging is
essentially a linear transformation that is not harmful. So, if in doubt - take
logs.

5.3 Other transformations

A common alternative to the log transformation is a power transformation
- as used in the Box-Cox family of transformations (Box and Cox, 1964).
If Xp is closer to Normal than X, then it is natural to describe differences
between groups by differences in means on the Xp scale. A snag is that
back-transforming to the original scale is more awkward.
As an example, consider the square root transformation, i.e. p = 1

2
- a

transformation which may be used if the variance is proportional to the
mean. Then the difference between the means would be

1

n

n∑
i=1

√
xi −

1

m

m∑
i=1

√
yi = Mx −My, say. (1)

The summaries Mx,My are on the root scale - if the observations are weights,
they are in

√
kg. While M2

x ,M
2
y are sensible summaries on the original scale,

squaring (1) gives M2
x +M2

y − 2MxMy, which is not really interpretable.
There is, therefore little to be done other than to consider M2

x − M2
y . But

this does not acknowledge that differences are best taken on the transformed
scale, and that differences on that scale may correspond to some other mea-
sure of discrepancy when back-transformed - as was the case with the log
transformation, which led to multiplicative effects on the original scale. This
important feature of the log transformation was discussed by Keene (1995).

5.4 Inference about the arithmetic mean

For most skewed data, the geometric mean is an appropriate summary. How-
ever, there are some cases where the arithmetic mean remains the most
pertinent summary. One such is cost data, which are often skewed. The
arithmetic mean, A, of the cost of a specified operation is useful because nA
is the expected cost of performing n such operations. A log-Normal distri-
bution could still be used - the logged costs would provide estimates of µ
and σ2 - but care would be needed to make inferences about the arithmetic
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mean, through exp(µ+ 1
2
σ2), rather than use the geometric mean. This is a

specialist area and the log-Normal may not be the best choice - some relevant
papers are Thompson and Nixon (2005); Ng et al. (2016).

5.5 Zeroes in the data

This article has considered only skewed positive data. However, from time
to time applied statisticians are faced with skewed data that contains a few
zeroes. For those persuaded that a log transformation is needed for skewed
data, these are the bane of their life, as the logarithm of zero is undefined.

5.5.1 Lots of zeroes

If the proportion of zeroes is substantial (and ‘substantial’ will need to be
judged in context - generally more than a few percent of zeroes is very trou-
blesome), then this is a clearly a germane feature of the data and needs
to be addressed in any model used for the data. A very simple approach
might be to reduce the outcome to 0 or 1, where 1 simply means ‘not zero’
and conduct a logistic regression. This analysis would then be supplemented
with an analysis of the non-zero outcomes, which can be logged. This might
suffice but more sophisticated analyses are possible, often using this general
approach but linking the two models in some way. Data of this kind are
sometimes referred to as ‘semi-continuous’ and Su et al. (2009) provides an
interesting introduction.

5.5.2 Not too many zeroes

Various ad hoc approaches may be profitable when the number of zeroes is
small relative to the sample size. A simple device is simply to add a ‘small’
positive quantity to each observed value - i.e. analyse not log y but log(y+ϵ).
Of course, what constitutes ‘small’ needs to be judged in the context of the
data. It may also be prudent to undertake sensitivity analyses - judging the
effect on pertinent inferences of varying ϵ. This may not turn out to be as
good as might be hoped - zeroes will be replaced in the analysis by log ϵ,
and as ϵ → 0, log ϵ → −∞, so as ϵ is reduced, the influence of the zeroes on
the analysis might become substantial. Reducing ϵ can also bring geometric
means arbitrarily close to zero, which may be a further unappealing feature
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of this approach.

An alternative approach is to enquire if the zeroes really are zero. In many
datasets of otherwise positive, skewed values, zero will mean that the ob-
servation is below some level of detection. If the level of detection can be
identified, then an approach that takes this into account may be more satis-
fying and satisfactory. How such information is taken into account is likely
to depend on the level of sophistication that the analyst believes is required.
It might range from adding a value of half the limit of detection to the zeroes
(which might be thought of as the expected value if the true observation were
uniformly distributed between the limit of detection and 0), to some form of
censored regression, treating the zeroes as censored values that are less than
the limit of detection,

A final, more statistical, method is to add a parameter to each observation
and estimate it from the data. Box & Cox (Box and Cox, 1964) did include
a shifted version of their transformation, namely

y(λ1,λ2) =
(y + λ2)

λ1 − 1

λ1

,

with y(0,λ2) = log(y + λ2). However, it is noteworthy that the authors never
applied this shifted form of their transformation to any of the illustrations
in their paper. The approach can be helpful, but estimation of such shift
parameters can be challenging, especially for likelihood inference (Atkinson,
1985, p. 185).
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Appendix

The temptation to give the following rather eccentric proof that Gn ≤ An is
irresistible.
Let An, Gn be, respectively, the arithmetic and geometric means of the n
positive numbers x1, . . . , xn, and let P(n) be the proposition that Gn ≤ An,
with equality iff all the xi are equal.

Now, P(1) is trivially true and P(2) follows from noting that (
√
x1 −√

x2)
2 ≥ 0.
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The usual inductive step, P(n) ⇒ P(n+ 1) is surprisingly awkward. How-
ever P(n) ⇒ P(n−1) is straightforward: supplement the values x1, . . . , xn−1

with x̄, the arithmetic mean of the n−1 values. Applying P(n) to x1, . . . , xn−1, x̄
gives an expression that readily simplifies to Gn−1 ≤ An−1, i.e. P(n− 1).

This isn’t much use for a proof by induction, so a second step is needed. This
is P(2n) ⇒ P(2n+1).

Consider the set of numbers S = {x1, . . . , x2n+1} and, by a slight abuse of
notation, let A1 be the arithmetic mean of the first 2n of these numbers
and A2 the same quantity for the second 2n numbers. Let G1, G2 be the
corresponding geometric means. As we know that P(2) is true

1
2
(A1 + A2) ≥

√
A1A2 ≥

√
G1G2

where the final inequality arises from Gj ≤ Aj because we assume P(2n).
The left hand expression above is the arithmetic mean of all values in S,
whereas the right hand expression is their geometric mean, so the above
shows P(2n+1) is true.

This last proof shows that Gn ≤ An for an infinity of n, and P(n) ⇒
P(n− 1) allows the gaps to be filled in!
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